بررسی نظری بهبود خواص فوتوکاتالیزوری اکسید روی و سولفید کادمیم در اثر هیبرید با چارچوب آلی- فلزی با استفاده از محاسبات تابعی چگالی

نویسندگان

گروه شیمی، دانشکده علوم، دانشگاه شهید باهنر، کرمان

چکیده

در این پژوهش، امکان تشکیل و اتصال لایه نازکی از Zn-MOF-5 بر روی زیرلایه اکسید روی و سولفید کادمیم برای بهبود خواص، انرژی و برهمکنش‌های شیمیایی بین فصل­مشترک MOF/ZnO و MOF/CdS با استفاده از محاسبات تابع چگالی مورد مطالعه قرارگرفت. نتایج این مطالعه، افزایش پایداری و بهبود خواص را به‌دنبال اصلاح ساختار از طریق هیبریداسیون با چارچوب آلی- فلزی، نشان می‌دهد. هم‌چنین مقایسه سیستم اکسید روی و سولفید کادمیم، کارایی بهتر چارچوب آلی- فلزی (MOF) بر روی زیر لایه اکسید روی را پیش‌بینی می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Density Functional Theory Calculation on Improving the Photocatalytic Properties of Zinc Oxide and Cadmium Sulfide by Hybridization with Metal-Organic Framework

نویسندگان [English]

  • M. Dehestani
  • L. Zeidabadinejad
  • S. Pourestarabadi
Department of Chemistry, Faculty of Science, Shahid Bahonar University, Kerman, Iran
چکیده [English]

In this study, energy and chemical interaction of ZnO and CdS surfaces interfaced with metal-organic framework (MOF), to improve their properties, have been investigated using density functional theory (DFT). Results show that reformation of structures by hybridation with MOF can increase their stability and improve their properties. Comparison of ZnO and CdS structures predict that deposition of MOF on ZnO substrate can be more effective.

کلیدواژه‌ها [English]

  • ZnO
  • CdS
  • Metal-organic framework (MOF)
  • Hybrid structure
  • DFT
1. Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O. M., \"The Chemistry and Applications of Metal-Organic Frameworks\", Science, Vol. 341,
pp. 974-975, 2013.
2. Chen, X., Shen, S., Guo, L. and Mao, S.S., \"Semiconductor-Based Photocatalytic Hydrogen Generation\", Chemical Reviews, Vol. 110, pp. 6503-6570, 2010.
3. Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K., \"A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production\", Renewable and Sustainable Energy Reviews, Vol. 11, pp. 401-425, 2007.
4. Okamoto, H., \"Semiconductor Quantum-Well Structures for Optoelectronics–Recent Advances and Future Prospects\", Japanese Journal of Applied Physics, Vol. 26, pp. 315-330, 1987.
5. Sarma, S.D. and Mason, B.A., \"Optical Phonon Interaction Effects in Layered Semiconductor Structures\", Annals of Physics, Vol. 163, pp. 78-119, 1985.
6. Xu, L., Huang, W.Q., Wang, L.L., Huang, G.F. and Peng P., \"Mechanism of Superior Visible-Light Photocatalytic Activity and Stability of Hybrid Ag3PO4/Graphen Nanocomposite\", The Journal of Physical Chemistry C, Vol. 118, pp. 12972-12979, 2014.
7. Zasada, F., Piskorz, W., Grybos, J. and Sojka, Z., \"Periodic DFT+D Molecular Modeling of the Zn-MOF-5(100)/(110) TiO2 Interface: Electronic Structure, Chemical Bonding, Adhesion, and Strain\", The Journal of Physical Chemistry C, Vol. 118,
pp. 8971–8981, 2014.
8. Zhang, T. and Lin, W., \"Metal-Organic Frameworks for Photocatalysis\", Structure Bond, Vol. 157, pp. 89-104, 2014.
9. Dey, C., Kundu, T., Biswal, B.P., Mallick, A. and Banerjee, R., \"Crystalline Metal-Organic Frameworks (MOFs): Synthesis, Structure and Function\", Acta Crystallographica B, Vol. 70, pp. 3-10, 2014.
10. Woll, C., \"The Chemistry and Physics of Zinc Oxide Surface\", Progress in Surface Science, Vol. 82,
pp. 55-120, 2007.
11. Huang, Y. and Ke, S.H., \"Hydrogen Storage in
MOF-5 with Fluorine Substitution: A Van Der Waals Density Functional Theory Study\", Advanced Materials Research, Vol. 716, pp. 244-247, 2013.
12. Macgillivray, L.R., Metal-Organic Frameworks: Design and Application, John Wiley, New Jersey, 2010.
13. Rowsell, J.L.C. and Yaghi, O.M., \"Metal-Organic Frameworks: A New Class of Porous Materials\", Microporous and Mesoporous Materials, Vol. 73, pp. 3-14, 2004.
14. Ferey, G., \"Metal-Organic Frameworks: The Young Child of the Porous Solids Family, from Zeolites to Porous MOF Materials\", Proceedings of the 40th Anniversary of International Zeolite Conference, Amsterdam, pp. 66-86, 2007.
15. Cheng, X., Li, F. and Zhao, Y., \"A DFT Investigation on ZnO Clusters and Nanostructures\", Journal of Molecular Structure: THEOCHEM, Vol. 894,
pp. 121–127, 2009.
16. Jain, K,S., Josefesson, I., Odelius, M., and Ramaniah, L.M., \"First Principles DFT Study of Dye-Sensitized CdS Quantum Dots\", Proceedings of AIP Conference, Vol. 1591, pp. 583-585, 2014.
17. Malloci, G., Chiodo, L., Rubio, A. and Mattoni, A., \"Structural and Optoelectronic Properties of Unsaturated ZnO and ZnSNanoclusters\", The Journal of Physical Chemistry C, Vol. 116, pp. 8741−8746, 2012.
18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., et al., Gaussian 09 Users Reference, Gaussian Inc., Walling ford CT, 2009.
19. Becke, A.D., \" Densityfunctional Thermochemistry. III. The Role of Exact Exchange\", The Journal of Chemical physics, Vol. 98, pp. 5648-5652 , 1993.
20. Gill, P.M.W., Johnson, B.G. and Pople, G.A., \"The Performance of the Becke-Lee-Yang-Parr (B-LYP) Density Functional Theory with Various Basis Sets\", Chemical Physics Letters, Vol. 192, pp. 499–505, 1992.

ارتقاء امنیت وب با وف ایرانی