رسوب‌دهی الکتریکی و مشخصه‌یابی پوشش‌های نانوبلوری آلیاژ نیکل- مولیبدن

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

در این پژوهش پوشش‌های نانوبلوری آلیاژ نیکل- مولیبدن به‌روش رسوب‌دهی الکتریکی و از حمام سیترات – آمونیاکی، با اعمال چگالی جریان‌های 30، 60 و mA/cm2 100 بر روی زیر لایه فولادی ایجاد شدند. نتایج نشان داد که پوشش‌های ایجاد شده یکنواخت و فشرده هستند و افزون بر آن با افزایش چگالی جریان پوشش‌دهی، مقدار مولیبدن آلیاژ و بازده جریان کاهش پیدا می‌کنند. تحلیل پراش پرتو ایکس نشان داد که تمامی پوشش‌ها، محلول جامدی از مولیبدن در نیکل و با اندازه دانه 5- 9 نانومتر بودند. هم‌چنین صفحه بلوری (111) برای نیکل بیشترین شدت در طیف پراش پرتو ایکس را داشت. بررسی زبری پوشش‌های به‌دست آمده نشان داد که با افزایش چگالی، زبری این پوشش‌ها افزایش یافته است. بررسی رفتار خوردگی گویای کاهش چگالی جریان خوردگی زیرلایه با اعمال پوشش‌های آلیاژی نیکل- مولیبدن بود. افزون بر این با افزایش مقدار مولیبدن پوشش، چگالی جریان خوردگی کاهش یافت که کمترین مقدار مربوط به پوشش با مقدار 13 درصد اتمی مولیبدن بود.

کلیدواژه‌ها


عنوان مقاله [English]

Electrodeposition and Characterization of Nanocrystalline Nickel- Molybdenum Alloy

نویسندگان [English]

  • V. Rajaei
  • K. Raeissi
  • M. Shamanian
  • H. Rashtchi
Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In this study, Ni-Mo nanocrystalline alloys were prepared on steel substrates by electrodeposition method from citrate-ammonia bath by applying current densities 30, 60 and 100 mA/cm2. Results indicated that the obtained coatings were uniform and compact. Moreover, molybdenum content in the alloy and current efficiency decreased with increasing electrodeposition current density. X-ray diffraction analyses indicated that all coatings were composed of face-centered cubic solid solution of molybdenum in nickel with grain size of 9-5 nanometer. Moreover, the most intensive plane in X-ray diffragtogram was (111). On the othe hand, roughness measurements indicated that surface roughness escalated with increasing current density. Corrosion behavior study showed decrease in corrosion current density of substrate with applying Ni-Mo alloy coatings. In addition, corrosion current density reduced with increasing molybdenum content of the coating and the minimum amount was related to the coating with 13 atomic percent molybdenum.

کلیدواژه‌ها [English]

  • Nickel- Molybdenum Alloy
  • electrodeposition
  • morphology
  • current density
1. Ohgai, T., Tanaka, Y. and Washio, R., \"Nanocrystalline Structure and Soft Magnetic Properties of Nickel-Molybdenum Alloy Thin Films Electrodeposited from Acidic and Alkaline Aqueous Solutions\", Journal of Solid State Electrochemistry, Vol. 17, pp. 743-750, 2013.
2. Donten, M., Cesiulis, H. and Stojek, Z., \"Electrodeposition of Amorphous/Nanocrystalline and Polycrystalline Ni–Mo Alloys from Pyrophosphate Baths\", Electrochimica Acta, Vol. 50, pp. 1405-1412, 2005.
3. Srivastava, M., Anandan, C. and Grips, V.K.W., \"Ni–Mo–Co Ternary Alloy as a Replacement for Hard Chrome\", Applied Surface Science, Vol. 285, Part B, pp. 167-174, 2013.
1. Ohgai, T., Tanaka, Y. and Washio, R., \"Nanocrystalline Structure and Soft Magnetic Properties of Nickel-Molybdenum Alloy Thin Films Electrodeposited from Acidic and Alkaline Aqueous Solutions\", Journal of Solid State Electrochemistry, Vol. 17, pp. 743-750, 2013.
2. Donten, M., Cesiulis, H. and Stojek, Z., \"Electrodeposition of Amorphous/Nanocrystalline and Polycrystalline Ni–Mo Alloys from Pyrophosphate Baths\", Electrochimica Acta, Vol. 50, pp. 1405-1412, 2005.
3. Srivastava, M., Anandan, C. and Grips, V.K.W., \"Ni–Mo–Co Ternary Alloy as a Replacement for Hard Chrome\", Applied Surface Science, Vol. 285, Part B, pp. 167-174, 2013.
.4بداغی، ع.، حسینی، ج. و عبدالملکی، م.، \"ترسیب الکتروشیمیایی پوشش‌های آلیاژی نیکل- مولیبدن به‌عنوان جایگزینی برای کرم سخت\"، نشریات آبکار/ پوشش‌های سطحی، شماره 29، ص ص 25-27، 1388.
5. Krstajić, N.V., Jović, V.D., Gajić-Krstajić, L., Jović, B.M., Antozzi, A.L. and Martelli, G.N., \"Electrodeposition of Ni–Mo Alloy Coatings and their Characterization as Cathodes for Hydrogen Evolution in Sodium Hydroxide Solution\", International Journal of Hydrogen Energy, Vol. 33, pp. 3676-3687, 2008.
6. González-Buch, C., Herraiz-Cardona, I., Ortega, E.M., García-Antón, J. and Pérez-Herranz, V., \"Development of Ni-Mo, Ni-W and Ni-Co Macroporous Materials for Hydrogen Evolution Reaction\", Chemical Engineering Transactions,
Vol. 32, pp. 865-870, 2013.
7. Aaboubi, O., \"Hydrogen Evolution Activity of Ni–Mo coating Electrodeposited under Magnetic Field Control\", International Journal of Hydrogen Energy, Vol. 36, pp. 4702-4709, 2011.
8. Abdel-Karim, R., Halim, J., El-Raghy, S., Nabil, M. and Waheed, A., \"Surface Morphology and Electrochemical Characterization of Electrodeposited Ni–Mo Nanocomposites as Cathodes for Hydrogen Evolution\", Journal of Alloys and Compounds,
Vol. 530, pp. 85-90, 2012.
9. Martinez, S., Metikoš-Huković, M. and Valek, L., \"Electrocatalytic Properties of Electrodeposited Ni–15Mo Cathodes for the HER in Acid Solutions: Synergistic Electronic Effect\", Journal of Molecular Catalysis A: Chemical, Vol. 245, pp. 114-121, 2006.
10. Mech, K., Zabiński, P., Mucha, M. and Kowalik, R., \"Electrodeposition of Catalytically Active Ni-Mo Alloys\", Archives of Metallurgy and Materials,
Vol. 58, pp. 227-229, 2013.
11. Bhattacharjee, P.P., Ray, R.K. and Upadhyaya, A., \"Development of Cube Texture in Pure Ni, Ni–W and Ni–Mo Alloys Prepared by the Powder Metallurgy Route\", Scripta Materialia, Vol. 53,
pp. 1477-1481, 2005.
12. Kedzierzawski, P., Oleszak, D. and Janik-Czachor, M., \"Hydrogen Evolution on Hot and Cold Consolidated Ni–Mo Alloys Produced by Mechanical Alloying\", Materials Science and Engineering: A, Vol. 300, pp. 105-112, 2001.
13. Li, X.Z., Liu, Z.D., Li, H.C., Wang, Y.T. and Li, B., \"Investigations on the Behavior of Laser Cladding Ni–Cr–Mo Alloy Coating on TP347H Stainless Steel Tube in HCl Rich Environment\", Surface and Coatings Technology, Vol. 232, pp. 627-639, 2013.
14. Melo, R.L., Casciano, P.N.S., Correia, A.N. and De Lima-Neto, P., \"Characterisation of Electrodeposited and Heat-Treated Ni-Mo-P Coatings\", Journal of the Brazilian Chemical Society, Vol. 23, pp. 328-334, 2012.
15. Zhu, X.B., Cai, C., Zheng, G.Q., Zhang, Z. and Li, J.F., \"Electrodeposition and Corrosion Behavior of Nanostructured Ni-TiN Composite Films\", Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 2216-2224, 2011.
16. Erb, U., El-Sherik, A.M., Palumbo, G. and Aust, K.T., \"Synthesis, Structure and Properties of Electroplated Nanocrystalline Materials\", Nanostructured Materials, Vol. 2, pp. 383-390, 1993.
17. Kuznetsov, V., Pavlov, M., Zimakov, D., Chepeleva, S. and Kudryavtsev, V., \"Electroreduction of Molybdate Ions in Solutions Containing Ammonium Ions\", Russian Journal of Electrochemistry, Vol. 40, pp. 711-715, 2004.
18. Marlot, A., Kern, P. and Landolt, D., \"Pulse Plating of Ni–Mo Alloys from Ni-rich Electrolytes\", Electrochimica Acta, Vol. 48, pp. 29-36, 2002.
19. Sanches, L.S., Domingues, S.H., Carubelli, A. and Mascaro, L.H., \"Electrodeposition of Ni-Mo and Fe-Mo Alloys from Sulfate-Citrate Acid Solutions\", Journal of the Brazilian Chemical Society, Vol. 14, pp. 556-563, 2003.
20. Chassaing, E., Portail, N., Levy, A.F. and Wang, G., \"Characterisation of Electrodeposited Nanocrystalline Ni–Mo Alloys\", Journal of Applied Electrochemistry, Vol. 34, pp. 1085-1091, 2004.
21. Halim, J., Abdel-Karim, R., El-Raghy, S., Nabil, M. and Waheed, A., \"Electrodeposition and Characterization of Nanocrystalline Ni-Mo Catalysts for Hydrogen Production\", Journal of Nanomaterials, Vol. 2012, p. 18, 2012.
22. Beltowska-Lehman, E., Bigos, A., Indyka, P. and Kot, M., \"Electrodeposition and Characterisation of Nanocrystalline Ni–Mo Coatings\", Surface and Coatings Technology, Vol. 211, pp. 67-71, 2012.
23. Bigos, A., Beltowska-Lehman, E., Indyka, P., Szczerba, M.J., Kot, M. and Grobelny, M., \"Electrodeposition and Properties of Nanocrystalline Ni-based Alloys with Refractory Metal from Citrate Baths\", Archives of Metallurgy and Materials,
Vol. 58, pp. 247-253, 2013.
24. Beltowska-Lehman, E. and Indyka, P., \"Kinetics of Ni–Mo Electrodeposition from Ni-rich Citrate Baths\", Thin Solid Films, Vol. 520, pp. 2046-2051, 2012.
25. Li, C.Q., Li, X.H., Wang, Z.X. and Guo, H.J., \"Nickel Electrodeposition from Novel Citrate Bath\", Transactions of Nonferrous Metals Society of China, Vol. 17, pp. 1300-1306, 2007.
26. Mousavi, R., Raeissi, K. and Saatchi, A., \"The Effect oF pH on the Properties of Ni-Mo Nanocrystalline Electrodeposits\", International Journal of Modern Physics B, Vol. 22, pp. 3060-3068, 2008.

تحت نظارت وف ایرانی