ساخت شیشه- سرامیک هادی یون لیتیوم با هدایت یونی بالا برای ساخت باتری‌های لیتیوم- اکسیژن و یون- لیتیوم تمام جامد

نویسندگان

1 1- دانشکده فنی و مهندسی، گروه مهندسی شیمی، دانشگاه اراک

2 2- دانشکده فنی و مهندسی، گروه مهندسی مواد، دانشگاه ملایر

3 3- انستیتو تحقیقاتی مهندسی شیمی و نفت، پاریس، فرانسه4- دانشکده مهندسی و علوم، دپارتمان مهندسی مواد، متالورژی و معدن، دانشگاه لاوال، کبک، کانادا5- دانشکده مهندسی، دپارتمان مهندسی شیمی، واحد تحقیقاتی ترمودینامیک دوربان، دانشگاه کوازولو- ناتال، افریقای جنوبی

چکیده

در این تحقیق غشای شیشه- سرامیک جدید با ساختار نوع ناسیکون و فرمول کلی (Li1+x+yAlxCryGe2-x-y(PO4)3, x+y=0/5) با روش انجماد سریع شیشه مذاب و تبدیل به شیشه- سرامیک از طریق عملیات حرارتی، سنتز و اثر اضافه نمودن غلظت‌های متفاوتی از عناصر آلومینیوم و کروم به ساختار LiGe2(PO4)3 جهت بهبود هدایت یونی مورد بررسی قرار گرفت. جایگزینی جزئی یون‌های Ge4+ موجود در ساختار ناسیکون با یون‌های Al3+ و Cr3+ منجربه القای مقادیر بیشتری از یون‌های لیتیم در حفره‌های خالی A2 جهت موازنه بار و همچنین تغییر در پارامترهای شبکه کریستال شد. این دو عامل باعث افزایش هدایت یونی شیشه- سرامیک شد. مشخصه‌یابی و بررسی ساختارهای آمورف و کریستاله در این تحقیق با آزمون‌های پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM)، طیف‌سنجی پراش انرژی پرتو ایکس (EDX)، گرماسنجی پویشی تفاضلی (DSC) و طیف سنجی امپدانس مختلط (CIS) انجام گرفت. بیشترین هدایت یونی برابر با8/82Í10-3  زیمنس بر سانتی‌متر برای نمونه با x=0/4 و y=0/1، (Li1.5Al0.4Cr0.1Ge1.5(PO4)3) که در دمای 850 درجه سانتی‌گراد برای مدت 8 ساعت کریستاله گردید، حاصل شد. این نمونه همچنین کمترین انرژی اکتیواسیون معادل با 267/0 الکترون ولت را از خود نشان داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of Lithium Ion Conductor Glass-Ceramic with High Conductivity for Producing Lithium-Air and all-Solid-State Lithium-Ion Batteries

نویسندگان [English]

  • M. Illbeigi 1
  • A. R. Fazlali 1
  • M. Kazazi 2
  • A. H. Mohammadi 3
1 1- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
2 2- Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran
3
چکیده [English]

In this research, new lithium ion conductor glass-ceramics with NASICON-type structure (Li1+x+yAlxCryGe2-x-y (PO4)3, x+y=0.5) were synthesized using melt-quenching method and converted to glass-ceramics through heat treatment. Influence of addition of different concentrations of aluminum and chromium in LiGe2(PO4)3 glass-ceramic was investigated for ionic conduction improvement. Substitution of Ge4+ ions in NASICON structure by Al3+ and Cr3+ ions induced more Li+ ions in A2 vacant sites to obtain charge balance and also changed the unit cell parameters. These two factors led to ionic conductivity improvement of synthesized glass-ceramics. The glass-ceramics were characterized and the amorth structures were investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Differential Scanning Calorimetry (DSC) and Complex Impedance Spectroscopy (CIS). The highest lithium ion conductivity of 8.82×10-3 S/cm was obtained for x=0.4 and y=0.1 (Li1.5Al0.4Cr0.1Ge1.5(PO4)3) crystallized at 850 oC for 8 h with minimum activation energy of 0.267 eV.
 

کلیدواژه‌ها [English]

  • Solid electrolyte
  • NASICON-type glass-ceramic
  • Lithium ion conductor
  • Lithium-air battery
  • All-solid-state battery
1. Feng, J. K., Lu, L., and Lai, M. O., “Lithium Storage Capability of Lithium Ion Conductor Li1.5Al0.5Ge1.5(PO4)3”, Journal of Alloys and Compounds, Vol. 501, pp. 255-258, 2010.
2. Kim, J. G., Son, B., Mukherjee, S., Schuppert, N., Bates, A., Kwon, O., Choi, M. J., Chung, H. Y., and Park, S., “A Review of Lithium and Non-Lithium Based Solid State Batteries”, Journal of Power Sources, Vol. 282, pp. 299-322, 2015.
3. Kraytsberg, A., and Ein-Eli, Y., “Review on Li-Air Batteries, Opportunities, Limitations and Perspective”, Journal of Power Sources, Vol. 196, pp. 886-893, 2011.
4. Dudney, N. J., “Solid-State Thin-Film Rechargeable Batteries”, Materials Science and Engineering B, Vol. 116, pp. 245-249, 2005.
5. Geng, H. X., Mei, A., Dong, C., Lin,Y. H., and Nan, C. W., “Investigation of Structure and Electrical Properties of Li0.5La0.5TiO3 Ceramics via Microwave Sintering”, Journal of Alloys and Compounds, Vol. 481, pp. 555-558, 2009.
6. Kobayashi, Y., Seki, S., Yamanaka, A., Miyashiro, H., Mita, Y., and Iwahori, T., “Development of High Voltage and High Capacity All-Solid-State Lithium Secondary Batteries”, Journal of Power Sources, Vol. 146, pp. 719-722, 2005.
7. Schwenzel, J., Thangadurai, V., and Weppner, W., “Developments of High Voltage All-Solid-State Thin Film Lithium Ion Batteries”, Journal of Power Sources, Vol. 154, pp. 232-238, 2006.
8. Zhang, M., Takahashi, K., Uechi, I., Takeda, Y., Yamamoto, O., Im, D., Lee, D., Chi, B., Pu, J., Li, J., and Imanishi, N., “Water-Stable Lithium Anode with Li1.4Al0.4Ge1.6(PO4)3-TiO2 Sheet Prepared by Tape Casting Method for Lithium-Air Batteries”, Journal of Power Sources, Vol. 235, pp. 117-121, 2013.
9. Knauth, P., “Inorganic Solid Li Ion Conductors: An Overview”, Solid State Ionics, Vol. 180, pp. 911-916, 2009.
10. Aleshin, G. Y., Semenenko, D. A., Belova, A. I., Zakharchenko, T. K., Itkis, D. M., Goodilin, E. A., and Tretyakov, Y. D., “Protected Anodes for Lithium-Air Batteries”, Solid State Ionics, Vol. 184, pp. 62-64, 2011.
11. Yao, X. L., Xie, S., Nian, H. Q., and Chen, C. H., “Spinel Li4Ti5O12 as a Reversible Anode Material Down to 0 V”, Journal of Alloys and Compounds, Vol. 465, pp. 375-379, 2008.
12. Kotobuki, M., Hoshina, K., and Kanamura, K., “Electrochemical Properties of Thin TiO2 Electrode on Li1+xAlxGe2−x(PO4) Solid Electrolyte” Solid State Ionics, Vol. 198, pp. 22-25, 2011.
13. Kun, H., Chengkui, Z., Yanhang, W., Bin, H., Xianyin, Y., Huifeng, Z., Yonghua, L., and Jiang, C., “Stability of Lithium Ion Conductor NASICON Structure Glass Ceramic in Acid and Alkaline Aqueous Solution” Solid State Ionics, Vol. 254,pp. 78-81, 2014.
14. Sun, Y., “Lithium Ion Conducting Membranes for Lithium-Air Batteries”, Nano Energy, Vol. 2,pp. 801-816, 2013.
15. Maldonado-Manso, P., Losilla, E. R., Martı´nez-Lara, M., Aranda, M., Bruque, S., Mouahid, F., and Zahir, M., “High Lithium Ionic Conductivity in the Li1+xAlxGeyTi2-x-y(PO4)3 NASICON Series”, Chemistry of Materials, Vol. 15, pp. 1879-1885, 2003.
16. Svitanko, A. I., Novikova, S. A., Safronov, D. V., and Yaroslavtsev, A. B., “Cation Mobility in Li1+xTi2–xCrx(PO4)3 Nasicon-Type Phosphates”, Neorganicheskie Materialy, Vol. 47, pp. 1521-1526, 2011.
17. Fu, J., “Fast Li+ Ion Conduction in Li2O-(Al2O3 ,Ga2O3)-TiO2-P2O5 Glass Ceramics”, Journal of Materials Science, Vol. 33, pp. 1549-1553, 1998.
18. Chowdari, B. V. R., SubbaRao, G. V., and Lee, G. Y. H., “XPS and Ionic Conductivity Studies on Li2O-Al2O3-(TiO2 or GeO2)-P2O5 Glass Ceramics”, Solid State Ionics, Vol. 136, pp. 1067-1075, 2000.
19. Kun, H., Yanhang, W., Chengkui, Z., Huifeng, Z., Yonghua, L., Jiang, C., Bin, H., and Juanrong, M., “Influence of Al2O3 Additions on Crystallization Mechanism and Conductivity of Li2O-Ge2O-P2O5 Glass Ceramics”, Physica B, Vol. 406, pp. 3947-3950, 2011.
20. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., and Adachi, G., “Electrical Properties and Sinterability for Lithium Germanium Phosphate Li1+xMxGe2-x(PO4)3, M=Al, Cr, Ga, Fe, Sc, and In Systems”, Bulletin of the Chemical Society of Japan, Vol. 6, pp. 2200-2204, 1992.
21. Xu, X., Wen, Z., Gu, Z., and Lin, Z., “High Lithium Conductivity in Li1.3Cr0.3Ge1.7(PO4)3 Glass Ceramics”, Material Letters, Vol. 58, pp. 3428- 3431, 2004.
22. Xu, X., Wen, Z., Gu, Z., Xu, X., and Lin, Z., “Preparation and Characterization of Lithium Ion Conducting Glass Ceramics in The Li1+xCrxGe2-x(PO4)3 System”, Electrochemistry Communications, Vol. 6, pp. 1233-1237, 2004.
23. Zhang, P., Wang, H., Si, Q., Matsui, M., Takeda, Y., Yamamoto, O., and Imanishi, N., “High Lithium Ion Conductivity Solid Electrolyte of Chromium and Aluminum Co-Doped NASICON-Type LiTi2(PO4)3”, Solid State Ionics, Vol. 272, pp. 101-106, 2015.
24. Thochom, J. S., and Kumar, B., “Composite Effect in Superionically Conducting Lithium Aluminium Germanium Phosphate Based Glass Ceramic”, Journal of Power Sources, Vol. 185, pp. 480-485, 2008.
25. Chung, H., and Kang, B., “Increase in Grain Boundary Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 by Adding Excess Lithium”, Solid State Ionics, Vol. 263, pp. 125-130, 2014.
26. Zhang, M., Huang, Z., Cheng, J., Yamamoto, O., Imanishi, N., Chi, B., and Pu, J., “Solid State Lithium Ionic Conducting Thin Film Li1.4Al0.4Ge1.6(PO4)3 Prepared by Tape Casting”, Journal of Alloys and Compounds, Vol. 590, pp. 147-152, 2014.
27. Liu, Z., Venkatachalam, S., and Wüllen, L., “Structure, Phase Separation and Li Dynamics in Sol-gel-derived Li1+ xAlxGe2− x(PO4)3”, Solid State Ionics, Vol. 276, pp. 47-55, 2015.
28. Safanama, D., Damiano, D., Prasada Rao, R., and Adams, S., “Lithium Conducting Solid Electrolyte Li1 + xAlxGe2− x(PO4)3 Membrane for Aqueous Lithium Air Battery”, Solid State Ionics, Vol. 262, pp. 211-215, 2014.
29. Leo, C. J., Chowdari, B. V. R., Subba Rao, G. V., and Souquet, J. L., “Lithium Conducting Glass Ceramic with Nasicon Structure”, Materials Research Bulletin, Vol. 37, pp. 1419-1430, 2002.
30. Jadhav, H. S., Cho, M., Kalubarme, R. S., Lee, J., Jung, K., Shin, K., and Park, C., “Influence of B2O3 Addition on the Ionic Conductivity of Li1.5Al0.5Ge1.5(PO4)3 Glass Ceramics” Journal of Power Sources, Vol. 241, pp. 502-508 2013.
31. Xu, X. X., Wen, Z. Y., Wu, X. W., Yang, XL., and Gu, Z. H., “Lithium Ion Conducting Glass Ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with Good Electrical and Electrochemical Properties”, Journal of American Ceramic Society, Vol. 90, pp. 2802-2806, 2007.
32. Thokchom, J. S., Gupta, N., and Kumar, B., “Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass-Ceramic”, Journal of Electrochemical Society, Vol. 155, pp. A915-A920, 2008.
33. Zhu, Y., Zhang, Y., and Lu, L., “Influence of Crystallization Temperature on Ionic Conductivity of Lithium Aluminum Germanium Phosphate Glass Ceramic” Journal of Power Sources, Vol. 290, pp. 123-129, 2015.
34. Irvine, J. T. S., Sinclair, D. C., and West, A. R., “Electroceramics: Characterization by Impedance Spectroscopy”, Advanced Material, Vol. 2, pp. 132-138, 1990.
35. Thokchom, J. S., and Kumar, B., “The Effects of Crystallization Parameters on the Ionic Conductivity of a Lithium Aluminum Germanium Phosphate Glass Ceramic”, Journal of Power Sources, Vol. 195, pp. 2870-2876, 2010.
36. Fu, J., “Fast Li Ion Conducting Glass Ceramics in the System Li2O- Al2O3 -Ge2O -P2O5”, Solid State Ionics, Vol. 104, pp. 191-194, 1997.
37. Goharian, P., Aghaei, A. R., EftekhariYekta, B., and Banijamali, S., “Ionic Conductivity and Microstructural Evaluation of Li2O-TiO2-P2O5-SiO2 Glass-Ceramics”, Ceramic International, Vol. 41, pp. 1757-1763, 2015.
38. Goharian, P., EftekhariYekta, B., Aghaei, A. R., and Banijamali, S., “Lithium Ion Conducting Glass-Ceramics in the System Li2O-TiO2-P2O5-Cr2O3-SiO2”, Journal of Non-Crystalline Solid, Vol. 409, pp. 120-125, 2015.
39. Hongping, C., Haizheng, T., Qide, W., and Xiujian, Z., “Thermal Behavior and Lithium Ion Conductivity of L2O-Al2O3-TiO2-SiO2-P2O5 Glass-Ceramics”, Journal of Wuhan University of Technology-Mater, Vol. 27, pp. 67-72, 2012.

ارتقاء امنیت وب با وف ایرانی