سینتیک رشد دانه در آلیاژهای منیزیم حاوی آلومینیوم و عنصر نادر خاکی گادولینیم

نویسندگان

1 دانشگاه تهراندانشکده مهندسی متالورژی و مواد، دانشکده فنی، دانشگاه تهران

2 دانشکده مهندسی متالورژی و مواد، دانشکده فنی، دانشگاه تهران

چکیده

تحولات ریزساختاری در حین عملیات آنیل دمای بالا برای آلیاژهای منیزیم حاوی آلومینیوم و گادولینیمپس از فرایند اکستروژن مورد ارزیابی قرار گرفت و با آلیاژ 61AZ مقایسه شد. با قرارگیری آلیاژها در دمای بالا مشخص شد که حضور فاز Gdز3(Mg,Al)  که پس از اکستروژن به‌شکل ذرات ریز و پراکنده در ریزساختار قرار می‌گیرد اثر مثبتی بر جلوگیری از رشد دانه‌ها دارد. همچنین مشخص شد که ذرات Gd2 Al نمی‌توانند به شکل مؤثری جلوی رشد دانه را بگیرند. از طرف دیگر، رشد دانه در آلیاژ 61AZ به‌عنوان یک مشکل جدی مطرح شد که می‌تواند به‌دلیل حل شدن ذرات بین فلزی 12Al 17Mg در دماهای بالاتر از 300 درجه سانتی‌گراد باشد. در آلیاژهای منیزیم حاوی آلومینیوم و گادولینیم، بهبود پایداری آلیاژ در دمای بالا دیده شد که به افزایش دمای ذوب نسبت داده شد. درنهایت، رشد دانه غیریکنواخت در حضور ذرات Al2Gd مشاهده شد که به اثر پین‌کنندگی غیریکنواخت مرزدانه‌ها توسط این ترکیب بین فلزی مرتبط شد.

کلیدواژه‌ها


عنوان مقاله [English]

Grain Growth Kinetics of Magnesium Alloys Containing Aluminum and Rare-Earth Element Gadolinium

نویسندگان [English]

  • B. Pourbahari 1
  • H. Mirzadeh 2
  • M. Emamy 2
1 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran.
2 School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Iran.
چکیده [English]

Microstructural evolutions during the high-temperature annealing of Mg alloys containing Al and Gd and after the extrusion process were evaluated and compared to those of the AZ61 alloy. It was revealed that during exposure at the elevated temperatures, the presence of (Mg,Al)3Gd phase, in the form of fine and dispersed particles in the matrix after the extrusion process, could be favorable for the inhibition of grain growth. It was also found that the Al2Gd particles could not effectively retard the coarsening of grains. On the other hand, the grain growth of AZ61 alloy was found to be problematic, which was related to the dissolution of the Mg17Al12 intermetallic phase at temperatures higher than 300°C. In the Mg alloys containing both Al and Gd elements, the increased thermal stability was observed, which was ascribed to the rise of the melting temperature. Finally, some abnormal grain growth was observed in the presence of Al2Gd phase, which was attributed to the nonuniform pinning of grain boundaries by this intermetallic compound.
 

کلیدواژه‌ها [English]

  • Magnesium alloys
  • Rare-earth elements
  • microstructure
  • Grain growth kinetics
1. Kubota, K., Mabuchi, M., and Higashi, K., “Review: Processing and Mechanical Properties of Fine-Grained Magnesium Alloys”, Journal of Materials Science, Vol. 34, pp. 2255-2262, 1999.
2. Mirzadeh, H., “Constitutive Analysis of Mg-Al-Zn Magnesium Alloys During Hot Deformation”, Mechanics of Materials, Vol. 77, pp. 80-85, 2014.
3. Wei, Y. h., Hou, L. f., Yang, L. J., Xu, B. S., Kozuka, M., and Ichinose, H., “Microstructures and Properties of Die Casting Components with Various Thicknesses made of AZ91D Alloy”, Journal of Materials Processing Technology, Vol. 209, pp. 3278-3284, 2009.
4. Mirzadeh, H., Roostaei, M., Parsa, M. H., and Mahmudi, R., “Rate Controlling Mechanisms During Hot Deformation of Mg-3Gd-1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning”, Materials and Design, Vol. 68, pp. 228-231, 2015.
5. Wang, Q., Mu, Y., Lin, J., Zhang, L., and Roven, H. J., “Strengthening and Toughening Mechanisms of an Ultrafine Grained Mg-Gd-Y-Zr Alloy Processed by Cyclic Extrusion and Compression”, Materials Science and Engineering A, Vol. 699, pp. 26-30, 2017.
6. Mirzadeh, H., “Quantification of the Strengthening Effect of Rare Earth Elements During Hot Deformation of Mg-Gd-Y-Zr Magnesium Alloy”, Journal of Materials Research and Technology, Vol. 5, pp. 1-4, 2016.
7. Lee, Y. C., Dahle, A. K., and Stjohn, D. H., “The Role of Solute in Grain Refinement of Magnesium”, Metallurgical and Materials Transactions A, Vol. 31, pp. 2895-2906, 2000.
8. Bu, F., Yang, Q., Guan, K., Qiu, X., Zhang, D., Sun, W., Zheng, T., Cui, X., Sun, S., Tang, Z., Liu, X., and Meng, J., “Study on the Mutual Effect of La and Gd on Microstructure and Mechanical Properties of Mg-Al-Zn Extruded Alloy”, Journal of Alloys and Compounds, Vol. 688, pp. 1241-1250, 2016.
9. Shahbeigi Roodposhti, P., Sarkar, A., Murty, K. L., and Scattergood, R. O., “Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy”, Journal of Materials Engineering and Performance, Vol. 25, pp. 3697-3709, 2016.
10. Kim, W. J., An, C. W., Kim, Y. S., and Hong, S. I., “Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing”, Scripta Materialia, Vol. 47, pp. 39-44, 2002.
11. Miao, Q., Hu, L., Wang, X., and Wang, E., “Grain Growth Kinetics of a Fine-Gained AZ31 Magnesium Alloy Produced by Hot Rolling”, Journal of Alloys and Compounds, Vol. 493, pp. 87-90, 2010.
12. Young, J. P., Askari, H., Hovanski, Y., Heidena, M. J., and Field, D. P., “Thermal Microstructural Stability of AZ31 Magnesium After Severe Plastic Deformation”, Materials Characterization, Vol. 101, pp. 9-19, 2015.
13. Roostaei, M., Shirdel, M., Parsa, M. H., Mahmudi, R., and Mirzadeh, H., “Microstructural Evolution and Grain Growth Kinetics of GZ31 Magnesium Alloy”, Materials Characterization, Vol. 118, pp. 584-592, 2016.
14. Pourbahari, B., Mirzadeh, H., and Emamy, M., “Elucidating the Effect of Intermetallic Compounds on the Behavior of Mg-Gd-Al-Zn Magnesium Alloys at Elevated Temperatures”, Journal of Materials Research, Vol. 32, pp. 4186-4195, 2017.
15. Pourbahari, B., Emamy, M., and Mirzadeh, H., “Synergistic Effect of Al and Gd on Enhancement of Mechanical Properties of Magnesium Alloys”, Progress in Natural Science: Materials International, Vol. 27, pp. 228-235, 2017.‌
16. Pourbahari, B., Mirzadeh, H., and Emamy, M., “Toward Unraveling the Effects of Intermetallic Compounds on the Microstructure and Mechanical Properties of Mg-Gd-Al-Zn Magnesium Alloys in the As-Cast, Homogenized, and Extruded Conditions”, Materials Science and Engineering A, Vol. 680, pp. 39-46, 2017.
17. Pourbahari, B., Mirzadeh, H., and Emamy, M., “The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-cast and Wrought Magnesium Alloys”, Journal of Materials Engineering and Performance, Vol. 27, pp. 1327-1333, 2018.
18. Dahle, A. K., Lee, Y. C., Nave, M. D., Schaffer, P. L., and Stjohn, D. H., “Development of the As-Cast Microstructure in Magnesium-Aluminium Alloys”, Journal of Light Metals, Vol. 1, pp. 61-72, 2001.
19. Naghizadeh, M., and Mirzadeh, H., “Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures”, Metallurgical and Materials Transactions A, Vol. 47, pp. 5698-5703, 2016.
20. Humphreys, F. J., and Hatherly, M., “Recrystallization and Related Annealing Phenomena”, Elsevier, 2012.‌
21. Bhattacharyya, J. J., Agnew, S. R., and Muralidharan, G., “Texture Enhancement During Grain Growth of Magnesium Alloy AZ31B”, Acta Materialia, Vol. 86, pp. 80-94, 2015.
22. Alizadeh, R., Mahmudi, R., Ngan, A. H. W., and Langdon, T. G., “Microstructural Stability and Grain Growth Kinetics in an Extruded Fine-Grained Mg-Gd-Y-Zr Alloy”, Journal of Materials Science, Vol. 50, pp. 4940-4951, 2015.
23. Radi, Y., and Mahmudi, R., “Effect of Al2O3 Nano-Particles on the Microstructural Stability of AZ31 Mg Alloy After Equal Channel Angular Pressing”, Materials Science and Engineering A, Vol. 527, pp. 2764-2771, 2010.
24. Kim, H. K., and Kim, W. J., “Microstructural Instability and Strength of an AZ31 Mg Alloy After Severe Plastic Deformation”, Materials Science and Engineering A, Vol. 385, pp. 300-308, 2004.‌

ارتقاء امنیت وب با وف ایرانی