خواص مکانیکی و مطالعه برگشت فنری در فرایند شکل‌دهی خزشی آلیاژ آلومینیم 7075

نویسندگان

گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس

چکیده

فرایند شکل­‌دهی خزشی از جمله فرایند­های نوینی است که به‌دلیل بهبود خواص مکانیکی و کاهش هزینه­ های تولید در صنایع هوایی توسعه یافته ­است. شکل­‌دهی خزشی بر اساس پدیده­ خزش و آزادسازی تنش در حین عملیات پیرسازی آلیاژهای عملیات حرارتی‌پذیر آلومینیوم رخ می­دهد. در این پژوهش، شکل­دهی خزشی آلیاژ آلومینیوم 7075 در دماهای 120، 150 و 180 درجه سانتی­گراد و زمان‌های 6، 24 و 48 ساعت انجام­ شد و از آزمون ­های کشش و سختی برای مشخصه ­یابی نمونه­ ها استفاده شد. با اندازه­‌گیری میزان برگشت‌­فنری مشخص شد که این پاسخ تابع دما و زمان بوده و با افزایش دما و زمان شکل­دهی خزشی، از 1/54 درصد به 51/39 درصد کاهش می­یابد. خواص مکانیکی نمونه ­ها نشان داد که با افزایش زمان شکل­دهی، استحکام و سختی افزایش می­یابد که دلیل آن، می ­تواند تحولات ریزساختاری ناشی از فرایند رسوب­گذاری در حین شکل‌­دهی خزشی باشد. با توجه به نتایج، دو نمونه به‌عنوان نمونه­ های بهینه از نظر برگشت ­فنری و خواص مکانیکی انتخاب شدند و رفتار کارسختی و مورفولوژی سطح شکست آنها بررسی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Mechanical Properties and Spring -Back Investigation in Creep Age Forming Process of 7075 Al Alloy

نویسندگان [English]

  • H. R. Shahverdi
  • R. Alipour Mogadam
Materials Engineering Department, Engineering Faculty ,Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Creep age forming (CAF) process is a novel metal forming method with major benefits including improved mechanical properties and cost reduction for aviation industry applications. CAF happens due to creep phenomenon and stress-release during the artificial aging of heat-treatable  aluminum alloys. In this work, the creep age forming of 7075 Aluminum alloy at 120, 150 and 180 °C for 6, 24 and 48 h was done; tensile and hardness tests were used to characterize the samples. Results on spring-back revealed that it was influenced by time and temperature;  by increasing the time and temperature, it was reduced from 54.1 to 39.51. Mechanical property evaluation also showed that by increasing the time, the strength and hardness could be enhanced due to microstructural evolution and precipitation during the CAF process. According to the mechanical and CAF results, two samples were selected as the optimum ones and their work hardening behavior and fracture surfaces were investigated

کلیدواژه‌ها [English]

  • Creep-age Forming
  • 7075 Aluminum Alloy
  • Springback
  • mechanical properties
1. Dursun, T., and Soutis, C., “Recent Developments in Advanced Aircraft Aluminium Alloys”, Materials & Design, Vol. 56, pp. 862-871, 2014.
2. Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R., and Miller, W. S., “Recent Development in Aluminium Alloys for Aerospace Applications”, Materials Science and Engineering, Vol. 280, pp. 102–107, 2000.
3. Knight, S. P., Pohl, K., Holroyd, N. J. H., Birbilis, N., Rometsch, P. A., Muddle, B. C., Goswami, R., and Lynch, S. P., “Some Effects of Alloy Composition on Stress Corrosion Cracking in Al-Zn-Mg-Cu Alloys”, Corrosion Science, Vol. 98, pp. 50-62, 2015.
4. Lin, Y. C., Zhang, J. L., Liu, G., and Liang, Y. J., “Effects of Pre-Treatments on Aging Precipitates and Corrosion Resistance of a Creep-Aged Al-Zn-Mg-Cu Alloy”, Materials & Design, Vol. 83, pp. 866-875, 2015.
5. Lin, Y. C., Jiang, Y. Q., Zhang, X. C., Deng, J., and Chen, X. M., “Effect of Creep-Aging Processing on Corrosion Resistance of an Al-Zn-Mg-Cu Alloy”, Materials & Design, Vol. 61, pp. 228-238, 2014.
6. Timoshenko, S., and Woinowsky-Krieger, S., Thoery of Plates and Shells, McGraw-Hill, Inc., Vol. 591. 1959.
7. Zhan, L., Lin, J., and Dean, T. A., “A Review of the Development of Creep Age Forming: Experimentation, Modelling and Applications”, International Journal of Mechanics &Tools Manufacturing, Vol. 51, pp. 1–17, 2011.
8. Han L. H., Tan S. G., Huang M. H., and Xuhua, Y., “Spring Back for 2124 Aluminum Alloy During Creep Aging Forming”, Materials for Mechanical Engineering, Vol. 01, pp. 21-24, 2013.
9. Zhan, L. H., Tan, S. G., Huang, M. H., and Niu, J., “Creep Age-Forming Experiment and Springback Prediction for AA2524”, Advance Materials Research, Vol. 457-458, pp. 122-129, 2012.
10. Jia, S. -F., Zhan, L. -H., and Xu, X.-L., “Experimental Research on the Springback in Creep Age Forming of Aluminum Alloy Panel with Stiffeners”, Suxing Gongcheng Xuebao”, Journal of Plasticity Engineering, Vol. 20, p. 3969, 2013.
11. Arabi Jeshvaghani, R., Zohdi, H., Shahverdi, H. R., Bozorg, M., and Hadavi, S. M. M., “Influence of Multi-Step Heat Treatments in Creep Age Forming of 7075 Aluminum Alloy: Optimization for Springback, Strength and Exfoliation Corrosion, Matereials Characterization, Vol. 73, pp. 8-15, 2012.
12. Zhang, J., Deng, Y. L., Li, S. Y., Chen, Z. Y., and Zhang, X. M., “Creep Age Forming of 2124 Aluminum Alloy with Single/Double Curvature”, Transaction of Nonferrous Metals. Society of China (English Ed.), Vol. 23, pp. 1922-1929, 2013.
13. Ho, K. C., Lin, J., and Dean, T. A., “Modelling of Springback in Creep Forming Thick Aluminum Sheets”, International Journal of Plasticity, Vol. 20, pp. 733-751, 2004.
14. Lam, A. C. L., Shi, Z., Yang, H., Wan, L., Davies, C. M., Lin, J., and Zhou, S., “Creep-Age Forming AA2219 Plates with Different Stiffener Designs and Pre-Form Age Conditions: Experimental and Finite Element Studies”, Journal of Materials Process Technology, Vol. 219, pp. 155-163, 2015.
15. Yang, Y., Zhan, L., Shen, R., Yin, X., Li, X., Li, W., Huang, M., and He, D., “Effect of Pre-Deformation on Creep Age Forming of 2219 Aluminum Alloy: Experimental and Constitutive Modelling”, Materials Science and Engineering A, Vol. 683, pp. 227-235, 2017.
16. Xu, Y., Zhan, L., and Li, W., Effect of Pre-Strain on Creep Aging Behavior of 2524 Aluminum Alloy”, Journal of Alloys and Compound, Vol. 691, pp. 564-571, 2017.
17. Arabi Jeshvaghani, R., Emami, M., Shahverdi, H. R., and Hadavi, S. M. M., “Effects of Time and Temperature on the Creep Forming of 7075 Aluminum Alloy: Springback and Mechanical Properties”, Materials Science and Engineering A, Vol. 528, pp. 8795-8799, 2011.
18. Zhang, J., Wang, Y., Deng, Y., and Zhang, X., “Effect of Deformation Degree on the Creep Age Forming of 7475 aLuminum Alloy: The Feasibility of the Extended Deformation Range”, Materials Science and Engineering A, Vol. 664, pp. 126-134, 2016.
19. Li, H. Y., and Lu, X. C. “Springback and Tensile Strength of 2A97 Aluminum Alloy During Age Forming”, Transaction of Nonferrous Metals. Society of China (English Ed.), Vol. 25, pp. 1043-1049, 2015.
20. Lei, C., Yang, H., Li, H., Shi, N., and Zhan, L. H., Dependences of Microstructures and Properties on Initial Tempers of Creep Aged 7050 Aluminum Alloy”, Journal of Material Process Technology, Vol. 239, pp. 125-132, 2017.
21. Arabi Jeshvaghani, R., Shahverdi, H. R., and Hadavi, S. M. M., “Investigation of the Age Hardening and Operative Deformation Mechanism of 7075 Aluminum Alloy under Creep Forming”, Materials Science and Engineering A, Vol. 552, pp. 172-178, 2012.
22. Ho, K. C., Lin, J., and Dean, T. A., “Constitutive Modelling of Primary Creep for Age Forming an Aluminium Alloy”, Journal of Materials Process Technology, Vol. 153-154, pp. 122-127, 2004.
23. Hu, L., Zhan, L., Shen, R., Liu, Z., Ma, Z., Liu, J., Yang, Y., “Effects of Uniaxial Creep Ageing on the Mechanical Properties and Micro Precipitates of Al-Li-S4 Alloy”, Materials Science and Engineering A, Vol. 688, pp. 272-279, 2017.
24. Merica, P. D., “Precipitation Hardening”, Meterials Progress, Vol. 27, pp. 31-35, 1935.
25. Mccallum, S., “Upper Body Structure Design Strategies Upper Body Structure Design Strategies Implemented on the 2011 Chevrolet Volt, Strategies. 2011.
26. Reda, Y., Abdel-Karim, R., and Elmahallawi, I., “Improvements in Mechanical and Stress Corrosion Cracking Properties in Al-Alloy 7075 via Retrogression and Reaging”, Materials Science and Engineering A, Vol. 485, pp. 468-475, 2008.
27. Feng, J., Li, Z., Peng, W. C., Xing L. I., Z. Qiang J., W., Jing Chen, Z., and Qiao, Zh., “Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments”, Transaction of Nonferrous Metals. Society of China (English Ed.), Vol. 18, pp. 755-762, 2008.
28. Alexopoulos, N. D., Velonaki, Z., Stergiou, C. I., and Kourkoulis, S. K., “Effect of Ageing on Precipitation Kinetics, Tensile and Work hardening Behavior of Al-Cu-Mg (2024) Alloy”, Materials Science and Engineering A, Vol. 700 , pp. 457-467, 2017.
29. Ratheneau, G. W., “Report of the Conference on Defects in Crystalline Solids”, Acta Crystallographica, Vol. 8, pp. 855-856, 1955.

تحت نظارت وف ایرانی