خوردگی خستگی فولاد زنگ‌نزن pH4-17 در محیط شبیه‌سازی شده آب دریا

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان

چکیده

از آنجایی که فولاد زنگ­نزن رسوب سخت شونده مارتنزیتی pH4-17 کاربرد وسیعی در محیط­ های خورنده دارد، مطالعه رفتار خوردگی خستگی این آلیاژ حائز اهمیت است. در این پژوهش، پس از مطالعات ریزساختاری، آزمون­ های مکانیکی، خوردگی، خستگی و خوردگی خستگی روی نمونه­ های pH4-17 در چرخه بهینه حرارتی انجام شده است. آزمون­ های خستگی و خوردگی خستگی در نسبت تنش 1- و فرکانس اعمال تنش 42/0 هرتز (جهت افزایش تأثیر محلول خورنده) و آزمون خوردگی خستگی در حضور محلول خورنده 5/3 درصد وزنی NaCl  مشابه محیط خورنده آب دریا انجام گرفت. حد خستگی آلیاژpH 4-17 در هوا 700 مگاپاسکال و در محیط خورنده 415 مگاپاسکال است. مقایسه نمودار S-N این آلیاژ در چرخه بهینه حرارتی در دو حالت خستگی و خوردگی خستگی، کاهش حد خستگی در حدود 40 درصد را در محیط خورنده مشخص کرد. بررسی­ ها نشان داد این امر ناشی از تأثیر منفی حفرات خوردگی مشاهده شده در سطح و آسیب دیدن لایه رویین تشکیل شده بر سطح این فولاد زنگ نزن است.

کلیدواژه‌ها


عنوان مقاله [English]

Corrosion Fatigue of 17-4pH Stainless Steel in a Simulated Sea Water Solution

نویسندگان [English]

  • M. Ghasemian Malakshah
  • F. Ashrafizadeh
  • A. Eslami
  • F. Fadaeifard
Isfahan university of technology
چکیده [English]

Since martensitic precipitation hardened 17-4pH stainless steel has been widely used in corrosive environments, evaluation of its corrosion fatigue behavior is important. In this research, after microstructural studies, mechanical, corrosion, fatigue and corrosion fatigue tests were performed on 17-4pH specimens. Fatigue and corrosion fatigue tests were carried out at the  stress ratio of -1 and the  stress frequency of 0.42 Hz (to increase the effect of corrosive solution), and corrosion fatigue tests were conducted in 3.5% NaCl solution, an  environment similar to corrosive sea water. Fatigue limit of 17-4pH stainless steel was 700 MPa in air and 415 MPa in corrosive environment. Comparing the S-N curves of this alloy at the optimal heat treatment cycle in two modes of fatigue and corrosion fatigue revealed the reduction of fatigue limit up to 40 % in the presence of corrosive environment. This reduction was due to the effect of observed corrosion pits on the surface and Damaged passive layer.

کلیدواژه‌ها [English]

  • Optimal heat cycle
  • Corrosion fatigue
  • Precipitation Hardenable Stainless Steel
  • S-N Curve
1. Wu, J. H., and Lin, C. K., “Effect of Strain Rate on High-Temperature Low-Cycle Fatigue of 17-4 pH Stainless Steels”, Materials Science and Engineering: A, Vol. 390, No. 1, pp. 291-298, 2005.
2. Arisoy, C. F., Basman, G., and Seen, M. K., “Failure of a 17-4 pH Stainless Steel Sailboat Propeller Shaft”, Engineering Failure Analysis, Vol. 10, No. 6, pp. 711-717, 2003.
3. Mohd, S., Bhuiyan, M. S., Nie, D., Otsuka, Y., and Mutoh, Y., “Fatigue Strength Scatter Characteristics of JIS SUS630 Stainless Steel with Duplex S-N Curve”, International Journal of Fatigue, Vol. 82, pp. 371-378, 2016.
4. Wang, J., Zou, H., Li, C., Zou, R., Qiu, S., and shen, B., “Relationship of Microstructure Transformation and Hardening Behavior of Type 17-4 pH Stainless steel”, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, Vol. 13, No. 3, pp. 235-239, 2006.
5. Wu, J. H., and Lin, C-K., “Tensil and Fatigue Properties of 17-4 pH Stainless Steel at High Temperatures”, Metallurgical and Materials Transactions A, Vol. 33, N0. 6, pp. 1715-1724, 2002
6. Coseglio, M. S. D. R., “Sulphide Stress Cracking of 17-4 pH for Applications in Oilfield Components”, Materials Science and Technology, pp. 1-16. 2017.
7. Hsiao, C. N., Chiou, C. S., and Yang, J. R., “Aging Reaction in a 17-4 pH Stainless Steel”, Materials Chemistry and Physics, Vol. 74, No. 2, pp. 134-142, 2002.
8. Wu, J. H., “Influence of High Temperature Exposure on the Mechanical Behavior and Microstructure Steel”, Journal of Materials Science, Vol. 38, No. 5, pp. 965-971, 2003.
9. Viswanathan, V. K., Banerjee, S., and Krishnan, R., “Effect of Aging on the Microstructure of 17-4pH Stainless Steels”, Materials Science and Engineering, Vol. 104, No. 1, pp. 181-189, 1988.
10. Razavi, S. A., Ashrafizadeh, F., and Fooladi, S., “Prediction of Age Hardening Parameters for 17-4pH Stainless Steel by Artificial Neural Network and Genetic Algorithm”, Materials Science and Engineering, Vol. 675, pp. 147-152, 2016.
11. Riazi, H., Ashrafizadeh, F., Hosseini, S. R., and Ghomashchi, R. “Influence of Simultaneous Aging and Plasma Nitriding on Fatigue Performance of 17-4pH Stainless Steel”, Materials Science and Engineering, Vol. 703, pp. 262-269, 2017.
12. Syrett, B. C., Viswanathan, R., Wing, S. S., and Wittig, J. E., “Effect of Microstructure on Pitting and Corrosion Fatigue of 17-4pH Turbine Blade Steel in Chloride Environments”, Corrosion, Vol. 38, No. 5, pp. 273-282, 1982.
13. Wang, J., Zou, H., Li, C., Peng, Y., Qiu, S., and Shen, B., “The Microstructure Evolution of Type 17-4pH Stainless Steel During Long-Term Aging at 350 C”, Nuclear Engineering and Design, Vol. 236, No. 24, pp.2531-2536, 2006.
14. Honeycombe, R. W. K., “Steels-Microstructure and Properties”, Edward Arnold Ltd., 1981.
15. ASM Handbook, Alloy Phase Diagrams, ASM International, Materials Park, OH, USA, Vol. 3, 1992.
16. Bhambroo, R., Roychowdhury, S., Kain, V., and Raja, V., “Effect of Reverted Austenite on Mechanical Properties of Precipitation Hardenable 17-4 Stainless Steel”, Materials Science and Engineering: A, Vol. 568, pp. 127-133, 2013.
17. ASM Handbook., Failure Analysis and Prevention, Edited by RJ Shipley and WT Becker, ASM International, Vol. 11, 2002.
18. ASM Handbook, Fracture Appearance and Mechanisms of Deformation and Fracture, Edited by W.T. Becker, and S. Lampman, ASM International, Vol. 11, 2002.
19. Metals Handbook, Failure Analysis and Prevention, Edited by HE Boyer, ASM International, Vol. 10, 1986..
20. ASTM G 61-86, Standard Test Method for Conduction Cyclic Potentiodynamic Polarization Measurement for Localized Corrosion Susceptibility of Iron-, Nickel-, or Cobalt-Based Alloy”, Annual Book of ASTM Standards: 2003.
21. Pan, C., Liu, L., Li, Y., and Wang, F., “Pitting Corrosion of 304ss Nanocrystalline Thin Film”, Corrosion Science, Vol. 73, pp. 32-43, 2013.
22. Mapelli, C., and Nolli, P., “Formation Mechanism of Non-metallic Inclusions in Different Stainless Steel Grades”, Iron and Steel Institute of Japan International, Vol. 43, No. 8, pp. 1191-1199, 2003.
23. Rack, H. J., and Kalish, D., “The Strength, Fracture Toughness, and Low cycle Fatigue Behavior of 17-4pH Stainless Steel”, Metallurgical Transactions 5, No. 7, pp. 1595-1605, 1974.
24. Schönbauer, B. M., Stanzl-Tschegg, S. E., Perlega, A., Salzman, R. N., Rieger, N. F., Turnbull, A., and Gandy, D. “The Influence of Corrosion Pits on the Fatigue Life of 17-4pH Steam Turbine Blade Steel”, Engineering Fracture Mechanics, Vol. 147, pp. 158-175, 2015.

ارتقاء امنیت وب با وف ایرانی