بررسی میکروساختار و رفتار اکسیداسیون و الکتریکی فولاد Crofer 22APU پوشش داده شده با تیتانیوم برای کاربرد در اتصال‌دهنده‌های پیل سوختی اکسید جامد

نویسندگان

1 1. بخش مهندسی دانشکده مهندسی مکانیک و مواد، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان

2 2. بخش مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان

چکیده

 یکی از مؤثرترین راه ­ها برای بهبود مقاومت به اکسیداسیون اتصال دهنده­ های مورد استفاده در پیل‌های سوختی اکسید جامد، اعمال یک لایه پوشش رسانای محافظ است. در این پژوهش، فولاد فریتیCrofer 22APU در یک مخلوط پودر پایه تیتانیوم به‌روش سمانتاسیون فشرده پوشش داده شد. ترکیب پودر برای پوشش‌دهی تیتانیوم به صورت20 درصد وزنی Ti، 5 درصد وزنی NH4Cl به‌عنوان فعال‌کننده و 75 درصد وزنی Al2O3 بود. بهینه دما و زمان برای دست­یابی به بهترین کیفیت پوشش از لحاظ چسبندگی و عدم تخلخل 800 درجه سانتی‌گراد به‌مدت زمان هفت ساعت بود. پوشش تیتانایز حاصل شامل فاز­های TiFe، TiFe2 و TiCr2 بود. نتایج مربوط به آزمون­ های اکسیداسیون همدما و اکسیداسیون سیکلی در دمای 900 درجه سانتی‌گراد، نشان داد که نمونه‌های پوشش داده شده با تیتانیوم مقاومت به اکسیداسیون بهتری نسبت به نمونه‌های بدون پوشش دارند. مطالعات ساختاری و فازی نمونه­ های پوشش­ دار و اکسید شده با میکروسکوپ الکترونی روبشی و آزمون پراش پرتو ایکس انجام شد. در طول فرایند اکسیداسیون، پوشش به فازهای TiFe، TiFe2، TiFe2O5، TiO2 و TiCr2O4 تبدیل شده ­است. افزایش وزن نمونه‌های پوشش­ دار نسبت به نمونه‌های بدون پوشش کمتر بود که نشان می‌دهد پوشش به‌طور مؤثری زیرلایه را در برابر اکسیداسیون حفظ می‌کند. همچنین، مقاومت الکتریکی نمونه‌های پوشش­ دار از نمونه‌های بدون پوشش بالاتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on the Microstructure, Oxidation and Electrical Behavior of Ti-coated Crofer 22APU Steel for SOFC Interconnect Applications

نویسندگان [English]

  • H. Ebrahimifar 1
  • M. Zandrahimi 2
  • F. Ekhlaspour 2
1 1. Department of Materials Engineering, Faculty of Mechanical and Materials Engineering, Graduate University of Advanced Technology, Kerman, Iran.
2 2. Department of Metallurgy and Materials Science, Shahid Bahonar University of Kerman, Kerman. Iran.
چکیده [English]

One of the most effective ways to improve oxidation resistance of interconnects used in solid oxide fuel cells (SOFCs) is to apply a layer of conductive protective coating. In this study, Crofer 22APU ferritic steel was coated in a titanium- based powder mixture by pack cementation method. The powder composition for titanium coating was Ti 20 wt.%, NH4Cl 5 wt.% (activator) and Al2O3 75 wt.%. The optimum temperature and time to obtain the best coating quality in terms of adhesion and porosity were 800 °C and 7 hours, respectivly. The obtained titanized coating consisted of TiFe, TiFe2 and TiCr2 phases. The results of isothermal and cyclic oxidation tests carried out at 900 °C, showed that titanium-coated samples had better oxidation resistance than non-coated samples. Microstructural and phase studies of coated and oxidized samples were performed by scanning electron macroscopy (SEM) and X-ray diffraction analysis (XRD). During oxidation process, the coating layer was converted into TiFe, TiFe2, TiFe2O5, TiO2 and TiCr2O4 phases. The coated specimens had lower weight gains relative to uncoated samples showing that coating effectively protects the substrate against oxidation. Moreover, coated samples had higher electrical resistance than uncoated ones.

کلیدواژه‌ها [English]

  • Oxidation
  • Titanium
  • Crofer 22APU stainless steel
  • solid oxide fuel cell
1. Zhu, W. Z., and Deevi, S. C., “Development of Interconnect Materials for Solid Oxide Fuel Cells”, Materials Science and Engineering A, Vol. 348, pp. 227-243, 2003.
2. Chen, X., Hou, P. Y., Jacobson, C. P., Visko, S. J., and De Jonghe, L. C., “Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties”, Solid State Ionics, Vol. 176, pp. 425-433, 2005.
3. Yang, Z., Xia, G., Simner, S. P., and Stevenson, J. W., “Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects”, Journal of the Electrochemical Society, Vol. 152, pp. 1896-1901, 2005.
4. Yang, Z., Xia, G., Li, X., and Stevenson, J. W., “(Mn,Co)3O4 Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications”, International Journal of Hydrogen Energy, Vol. 32, pp. 3648-3654, 2007.
5. Yang, Z., Xia, G., Li, X., and Stevenson, J. W., “Mn1.5Co1.5O4 Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications”, Electrochemical and Solid-State Letters, Vol. 8, pp. A168-A170, 2005.
6. Wei, W., Chen W., and Ivey., D. G., “Anodic Electrodeposition of Nanocrystalline Coatings in the Mn-Co-O System”, Chemistry of Materials, Vol. 19, No. 11, pp. 2816-2822, 2007.
7. Bateni, M. R., Wei, P., Deng, X., and Petric, A., “Spinel Coatings for UNS 430 Stainless Steel Interconnects”, Surface & Coating Technology, Vol. 201, pp. 4677-4684, 2007.
8. Wei, P., Deng, X., Bateni, M. R., and Petric, A., “Oxidation and Electrical Conductivity Behavior of Spinel Coatings for Metallic Interconnects of Solid Oxide Fuel Cells”, Corrosion, Vol. 63, pp. 529-536, 2007.
9. Deng, X., Wei, P., Bateni, M. R., and Petric, A., “Cobalt Plating of High Temperature Stainless Steel Interconnects”, Journal of Power Sources, Vol. 160, pp. 1225-1229, 2006.
10. Chou, Y. S., Stevenson, J. W, and Singh, P., “Effect of Aluminizing of Cr-Containing Ferritic Alloys on the Seal Strength of a Novel High-Temperature Solid Oxide Fuel Cell Sealing Glass”, Journal of Power Sources, Vol. 185, pp. 1001-1008, 2008.
11. Ebrahimifar, H., and Zandrahimi, M., “Oxidation and Electrical Behavior of AISI 430 Coated with Cobalt Spinels for SOFC Interconnect Applications”, Surface and Coatings Technology, Vol. 206, pp. 75-81, 2011.
12. Ebrahimifar, H., and Zandrahimi, M., “Influence of Oxide Scale Thickness on Electrical Conductivity of Coated AISI 430 Steel for use as Interconnect in Solid Oxide Fuel Cells”, Ionics, Vol. 18, pp. 615-624, 2012.
13. Zandrahimi, M., Vatandoost, J., and Ebrahimifar, H, “Pack Cementation Coatings to Improve High-Temperature Oxidation Resistance of AISI 304 Stainless Steel”, Journal of Materials Engineering and Performance, Vol. 21, pp. 2074-2079, 2012.
14. Zandrahimi, M., Vatandoost, J., and Ebrahimifar, H., “Al, Si, and Al-Si Coatings to Improve the High-Temperature Oxidation Resistance of AISI 304 Stainless Steel”, Oxidation of Metals, Vol. 76, pp. 347-358, 2011.
15. Stel, F. U., and Zeytin, S., “Growth Morphology and Phase Analysis of Titanium-Based Coating Produced by Thermochemical Method”, Vacuum, Vol. 81, pp. 360-365, 2006.
16. Stanislowski, M., Wessel, E., Hilpert, K., Markus, T., and Singheiser, L., “Chromium Vaporization from High-Temperature Alloys I. Chromia-forming Steels and the Influence of Outer Oxide Layers”, Journal of the Electrochemical Society, Vol. 154, pp. 295-306, 2007.
17. Whittingham, M. S., Selected Topics in High Temperature Chemistry. Defect Chemistry of Solids: (Studies in Inorganic Chemistry), Edited by Johannesen O., and Andersen, A. G., Elsevier Science Publishers, Amsterdam and New York, 1989.
18. Qu, W., Jian, L., Douglas Ivey, G., and Hill, J. M., Yttrium, Cobalt and Yttrium/Cobalt Oxide Coatings on Ferritic Stainless Steels for SOFC Interconnects, Journal of Power Sources, Vol. 157, pp. 335-350, 2006.
19. Lobnig, R. E., Schmidt, H. P., Hennesen, K., and Grabke, H. J., “Diffusion of Cations in Chromia Layers Grown on Iron-Base Alloys”, Oxidation of Metals, Vol. 37, pp. 81-93, 1992.
20. Cox, M. G. C., Mcenaney, B., and Scott, V. D., “Chemical Diffusion Model for Partitioning of Transition Elements in Oxide Scales on Alloys”, Philosophical Magazine, Vol. 26, No. 26, pp. 839-851, 1972.
21. Kurokawa, H., Kawamura, K., and Maruyama, T., “Oxidation Behavior of Fe-16Cr Alloy Interconnect for SOFC under Hydrogen Potential Gradient”, Solid State Ionics, Vol. 168, pp. 13-21, 2004.
22. Pe´rez, F. J., Hierro, M. P., Trilleros, J. A., Carpintero, M. C., Sa´nchez, L., Brossard, J. M., and Bolı´var, F. J., “Iron Aluminide Coatings on Ferritic Steels by CVD-FBR Technology”, Intermetallics, Vol. 14, pp. 811-817, 2006.
23. N’Dah, E., Tsipas, S., Hierro, M. P., and Pe´rez, F. J., “Study of the Cyclic Oxidation Resistance of Al Coated Ferritic Steels with 9 and 12%Cr”, Corrosion Science, Vol. 49, pp. 3850-3865, 2007.
24. Shaigan, N., Ivey, D. G., and Chen, W., “Co/LaCrO3 Composite Coatings for AISI 430 Stainless Steel Solid Oxide Fuel Cell Interconnects”, Journals of Power Sources, Vol. 185, pp.331-337, 2008.
25. Cooper, L., Benhaddad, S., Wood, A., and Ivey, D. G., “The Effect of Surface Treatment on the Oxidation of Ferritic Stainless Steels used for Solid Oxide Fuel Cell Interconnects”, Journal of Power Sources, Vol. 184, pp. 220-228, 2008.
26. Horita, T., Xiong, Y., Yamaji, K., Sakai, N., and Yokokawa, H., “Evaluation of Fe-Cr Alloys as Interconnects for Reduced Operation Temperature SOFCs”, Journal of the Electrochemical Society, Vol. 150, pp.243-248, 2003.
27. Magrasó A, Falk-Windisch H, Froitzheim J, Svensson J. E., and Haugsrud, R., “Reduced Long Term Electrical Resistance in Ce/Co-coated Ferritic Stainless Steel for Solid Oxide Fuel Cell Metallic Interconnects”, International Journal of Hydrogen Energy, Vol. 40, pp. 8579-8585, 2015.
28. Hosseini, S. N., Karimzadeh, F., Enayati, M. H., and Sammes, N. M., “Oxidation and Electrical Behavior of CuFe2O4 Spinel Coated Crofer 22 APU Stainless Steel for SOFC Interconnect Application”, Solid State Ionics, Vol. 289, pp. 95-105, 2016.
29. Ebrahimifar, H., and Zandrahimi, M., “Oxidation and Electrical Behavior of Mn-Co-Coated Crofer 22 APU Steel Produced by a Pack Cementation Method for SOFC Interconnect Applications”, Oxidation of Metals, Vol. 84, pp. 129-141, 2015.
30. Ebrahimifar, H., and Zandrahimi, M., “Oxidation and Electrical Behavior of a Ferritic Stainless Steel with a Mn-Co-Based Coating for SOFC Interconnect Applications”, Oxidation of Metals, Vol. 84, pp. 329-344, 2015.

تحت نظارت وف ایرانی