روشی نوین برای ارزیابی تجربی خوردگی فرسایشی دمابالا در محیط زباله‌سوزی با بستر سیال

نویسندگان

1 1. گروه مهندسی مواد، دانشگاه بناب، بناب، ایران

2 2. گروه مهندسی و علم مواد، دانشگاه هوکایدو، ساپورو، ژاپن

چکیده

سطح خارجی لوله ­های مبدل­ حرارتی که در محیط زباله (زیست­توده) سوزی با بستر سیال به­ کار می ­­روند، در معرض آسیب شدید خوردگی فرسایشی دمابالا قرار دارد. به‌منظور ارزیابی رفتار و افزایش طول عمر لوله ­ها، شرایط واقعی صنعتی باید در محیط آزمایشگاه شبیه ­سازی شود. در این تحقیق، دستگاهی با بستری سیال از ماسه داغ طراحی و ساخته شد تا آلیاژ پایه نیکل SFNi4 را مورد خوردگی فرسایشی دمابالا قرار دهد. به‌منظور تشدید شرایط خورنده، ماسه سیلیسی با مقادیر 0، 5/0 و 1 درصد وزنی از مخلوط نمک‌های NaCl و KCl با نسبت مولی یک به­ یک آغشته شد. تغییر شرایط سایشی محیط، با استفاده از نرخ جریان هوای 20 و 25 لیتر بر دقیقه و زاویه برخورد ذرات به نمونه ­ها از 45 تا 90 درجه حاصل شد. نرخ زدایش ماده با اندازه­ گیری ضخامت هر نمونه پیش و پس از آزمون به ­دست آمد. پس از هر آزمون، سطح و مقطع عرضی نمونه‌ها با میکروسکوپ الکترونی روبشی و طیف‌سنجی پراش انرژی پرتو ایکس بررسی شد. در پایان پارامترهای بهینه خوردگی فرسایشی در شرایط واقعی صنعتی به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

A New Method for the Experimental Evaluation of High-Temperature Erosion-Corrosion in Fluidized Bed Waste Incineration Conditions

نویسندگان [English]

  • M. Emami 1
  • Sh. Hayashi 2
1 1. Division of Materials Engineering, University of Bonab, Bonab, Iran.
2 2. Division of Materials Science and Engineering, Hokkaido University, Sapporo, Japan.
چکیده [English]

The outer surface of heat exchanger tubes that work under fluidized bed waste or biomass incineration is exposed to severe high-temperature erosion-corrosion (E-C). To evaluate the behavior and enhance the service life of the tubes, the real service conditions ought to be simulated in the laboratory. In this study a test rig with a fluidized bed of hot sand was designed and manufactured to expose nickel-based SFNi4 alloy to high-temperature E-C. In order to increase the corrosiveness of the environment, the silicon oxide sand was mixed with 0, 0.5 and 1 wt.% of a mixture of NaCl and KCl salts with 1:1 molar ratio. The erosive conditions of the environment were changed by altering air flow rate from 20 to 25 L/min and changing the sand incident angle from 45 to 90 degrees. The rate of material removal was calculated by measuring the thickness of each sample before and after the test. After each experiment, the surface and cross-section of specimens were studied using SEM and EDS analysis. Finally, the optimum E-C parameters to ensure actual industrial conditions were obtained.

کلیدواژه‌ها [English]

  • High-temperature erosion-corrosion
  • Heat exchanger
  • Fluidized bed incineration
1. Liu, K., Pan, W. -P., and Riley, J. T., “A Study of Chlorine Behavior in a Simulated Fluidized Bed Combustion System”, Fuel, Vol. 79, No. 9, pp. 1115-1124, 2000.
2. Morris, M., and Waldheim, L., “Energy Recovery from Solid Waste Fuels using Advanced Gasification Technology”, Waste Management, Vol. 18, No. 6, pp. 557-564, 1998.
3. Hou, P., MacAdam, S., Niu, Y., and Stringer, J., “High Temperature Degradation by Erosion-Corrosion in Bubbling Fluidized Bed Combustors”, Materials Research, Vol. 7, No. 1, pp. 71-80, 2004.
4. Zhang, Y., Shimizu, K., Yaer, X., Kusumoto, K., and Efremenko, V. G.,“Erosive Wear Performance of Heat Treated Multi-Component Cast Iron Containing Cr, V, Mn and Ni Eroded by Alumina Spheres at Elevated Temperatures”, Wear, Vol. 390-391, pp. 135-145, 2017.
5. Varga, M., “High Temperature Abrasive Wear of Metallic Materials”, Wear, Vol. 376-377, pp. 443-451, 2017.
6. Varga, M., Antonov, M., Tumma, M., Adam, K., and Alessio, K. O., “Solid Particle Erosion of Refractories: A Critical Discussion of Two Test Standards”, Wear, Vol. 426-427, pp. 552-561, 2019.
7. Sharma, S. K., Venkata Manoj Kumar, B., and Kim, Y. W.,“Effect of Impingement Angle and WC Content on High Temperature Erosion Behavior of SiC-WC Composites”, International Journal of Refractory Metals and Hard Materials, Vol. 68, pp. 166-171, 2017.
8. Young, D. J., High Temperature Oxidation and Corrosion of Metals Second Edition, 2nd ed. Elsevier Ltd, 2016.
9. Neil Birks, F. S. P., and Gerald Meier, H., Introduction to the High-Temperature Oxidation of Metals, 2nd ed. New York: Cambridge University Press, 2006.
10. Emami, M., Hadavi, S. M. M., Hayashi, S., and Shahverdi, H. R., “High Temperature Performance of an FeAl Laser Coated 9Cr1Mo Steel”, Oxidation of Metals, 2013.
11. Rishel, D. M., Pettit, F. S., and Birks, N., “Some Principal Mechanisms in the Simultaneous Erosion and Corrosion Attack of Metals at High Temperatures”, Materials Science and Engineering A, Vol. 143, No. 1, pp. 197-211, 1991.
12. Kumar Roy, T., Bhattacharya, B., Ghosh, C., and Ajmani, S. K., Advanced High Strength Steel Processing and Applications, Eds., Springer, 2018.
13. Wellman R. G., and Nicholls, J. R., “High Temperature Erosion-Oxidation Mechanisms, Maps and Models”, Wear, Vol. 256, No. 9, pp. 907-917, 2004.
14. Chang, S. L., Pettit, F. S., and Birks, N., “Interaction Between Erosion and High-Temperature Corrosion of Metals: The Erosion-Affected Oxidation Regime”, Oxidation of Metals, Vol. 34, No. 1, pp. 23-45, 1990.
15. Kang, C. T., Pettit, F. S., and Birks, N.,“Mechanisms in the Simultaneous Erosion-Oxidation Attack of Nickel and Cobalt at High Temperature”, Metallurgical Transactions A, Vol. 18, No. 10, pp. 1785-1803, 1987.
16. Huttunen-saarivirta, E., Kinnunen, H., Tuiremo, J., Uusitalo, M., and Antonov, M., “Erosive Wear of Boiler Steels by Sand and Ash”, Wear, Vol. 317, No. 1, pp. 213-224, 2014.
17. Antonov, M., Veinthal, R., Huttunen-saarivirta, E., Hussainova, I., Vallikivi, A., Lelis, M., and Priss, J., “Effect of Oxidation on Erosive Wear Behaviour of Boiler Steels”, Tribology International, Vol. 68, pp. 35-44, 2013.
18. Tylczak, J. H.,“Erosion-Corrosion of Iron and Nickel Alloys at Elevated Temperature in a Combustion Gas Environment”, Wear, Vol. 302, No. 1, pp. 1633-1641, 2013.
19. Hou, P. Y., Niu, Y., Sum, T. J., and Stringer, J., “Effect of HCl on the Corrosion and Wear of In-bed Tubes in a Laboratory Simulated Bubbling Fluidized Bed”, Wear, Vol. 233-235, pp. 635-646, 1999.
20. Chang, S. L., Pettit, F. S., and Birks, N., “Effect of Angle of Incidence on the Combined Erosion-Oxidation Attack of Nickel and Cobalt”, Oxidation of Metals, Vol. 34, No. 1, pp. 47-70, 1990.
21. Huttunen-saarivirta, E., Antonov, M., Veinthal, R., Tuiremo, J., Mäkelä, K., and Siitonen, P., “Influence of Particle Impact Conditions and Temperature on Erosion-Oxidation of Steels at Elevated Temperatures”, Wear, Vol. 272, No. 1, pp. 159-175, 2011.
22. Lai, G. Y., High-Temperature Corrosion and Materials Applications. ASM International, 2007.
23. Link, R. J., Birks, N., Pettit, F. S., and Dethorey, F., “The Response of Alloys to Erosion-Corrosion at High Temperatures”, Oxidation of Metals, Vol. 49, No. 3, pp. 213-236, 1998.

ارتقاء امنیت وب با وف ایرانی