سینتیک اکسیداسیون ذرات پودری منیزیم در شرایط غیرهمدما

نویسندگان

دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

چکیده

در این پژوهش، تأثیر نرخ حرارت‌دهی بر سینتیک فرایند اکسیداسیون ذرات پودری منیزیم در شرایط غیرهمدما مورد مطالعه قرار گرفت. به این منظور، آزمون گرماسنجی افتراقی (DTA) و آزمون وزن‌سنجی حرارتی (TGA) در سه نرخ حرارت‌دهی 5، 10 و 20 کلوین بر دقیقه تا دمای 1000 درجه سانتی‌گراد تحت اتمسفر هوا، روی ذرات پودری منیزیم انجام شد. همچنین برای درک بهتر فرایند اکسیداسیون پودر منیزیم، با توجه به منحنی DTA اکسیداسیون پودر منیزیم در سرعت حرارت‌دهی 20 کلوین بر دقیقه، سه دمای مشخصه انتخاب شد. سپس نمونه‌هایی از پودر منیزیم تا این سه دما با نرخ 20 کلوین بر دقیقه حرارت‌دهی شدند و برای بررسی‌های فازشناسی و ریزساختاری به‌ترتیب تحت آزمون‌های پراش پرتو ایکس (XRD) و دستگاه میکروسکوپ الکترونی روبشی (SEM) قرار گرفتند. سپس با استفاده از روش‌های هم‌تبدیلی استارینک و فریدمن و همچنین روش‌های انطباقی مستقیم و غیرمستقیم بررسی‌های سینتیکی انجام شد. انرژی فعالسازی (E) و ضریب پیش‌نمایی (lnA) به‌دست آمده برای فرایند اکسیداسیون پودر منیزیم به‌ترتیب در محدوده 956-327 کیلوژول بر مول و 135-45 بر دقیقه قرار داشت. مدل واکنش برای نرخ‌های‏ حرارت‌دهی 5، 10 و 20 کلوین بر دقیقه، به‌ترتیب R2 ،A3/2 و D1 تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

Oxidation Kinetics of Magnesium Powder Particles in Non-Isothermal Condition

نویسندگان [English]

  • M. Soltani
  • A. Seifoddini
  • S. Hasani
Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran.
چکیده [English]

In this research, the effect of heating rate on oxidation kinetics of magnesium powder particles under non-isothermal conditions was studied. For this purpose, differential thermal analysis (DTA) and thermogravimetry analysis (TGA) was done on magnesium powder particles at three heating rates of 5, 10 and 20 K min-1 up to 1000 °C under air atmosphere. Also, in order to better understand the oxidation process of magnesium powder, three temperatures were selected according to the DTA curve at a heating rate of 20 K min-1. Then, samples of magnesium powder were heated up to these three temperatures with heating rate of 20 K min-1 and were subjected to X-ray diffraction (XRD) and scanning electron microscopy (SEM) for phase and microstructural analysis. Then, kinetic studies were performed using some isoconversional methods such as Starink and Friedman as well as direct and indirect fitting methods. The activation energy (E) and pre-exponential factor (lnA) for oxidation of magnesium powder were in the range of 327-956 kJ mol-1 and 45-135 min-1, respectively. The reaction models for heating rates of 5, 10 and 20 K min-1 were obtained to be A3/2, R2 and D1, respectively.

کلیدواژه‌ها [English]

  • Oxidation
  • Kinetic
  • Non-isothermal analysis
  • Magnesium powder
  • Mechanism
1. Gang, L., Chunmiao, Y., Peihong, Z., and Baozhi, C., “Experiment-Based Fire and Explosion Risk Analysis for Powdered Magnesium Production Methods”, Journal of Loss Prevention in the Process Industries, Vol. 21, pp. 461-465, 2008.
2. Sabatini, J. J., Nagori, A. V., Latalladi, E. A., Poret, J. C., Chen, G., Damavarapu, R., and Klapötke, T. M., “Applications of High-Nitrogen Energetics in Pyrotechnics: Development of Perchlorate-Free Red Star M126A1 Hand-Held Signal Formulations with Superior Luminous Intensities and Burn Times”, Propellants, Explosives, Pyrotechnics, Vol. 36, pp. 373-378, 2011.
3. Bergthorson, J. M., Goroshin, S., Soo, M. J., Julien, P., Palecka, J., Frost, D. L., and Jarvis, D. J., “Direct Combustion of Recyclable Metal Fuels for Zero-Carbon Heat and Power”, Applied Energy, Vol. 160, pp. 368-382, 2015.
4. Garra, P., Leyssens, G., Allgaier, O., Schönnenbeck, C., Tschamber, V., Brilhac, J. -F., Tahtouh, T., Guézet, O., and Allano, S., “Magnesium/Air Combustion at Pilot Scale and Subsequent PM and NOx Emissions”, Applied Energy, Vol. 189, pp. 578-587, 2017.
5. Bergthorson, J. M., Yavor, Y., Palecka, J., Georges, W., Soo, M., Vickery, J., Goroshin, S., Frost, D. L., and Higgins, A. J., “Metal-Water Combustion for Clean Propulsion and Power Generation”, Applied Energy, Vol. 186, pp. 13-27, 2017.
6. Goroshin, S., Higgins, A., and Kamel, M., “Powdered Metals as Fuel for Hypersonic Ramjets”, 37th Joint Propulsion Conference and Exhibit, Salt Lake City,USA, Vol. 1, pp. AIAA-2001-3919, 2001.
7. Wang, S., Corcoran, A. L., and Dreizin, E. L., “Combustion of Magnesium Powders in Products of an Air/Acetylene Flame”, Combustion and Flame, Vol. 162, pp. 1316-1325, 2015.
8. Friedman, R., and Maček, A., “Ignition and Combustion of Aluminium Particles in Hot Ambient Gases”, Combustion and Flame, Vol. 6, pp. 9-19, 1962.
9. Julien, P., Whiteley, S., Soo, M., Goroshin, S., Frost, D. L., and Bergthorson, J. M., “Flame Speed Measurements in Aluminum Suspensions using a Counterflow Burner”, Proceedings of the Combustion Institute, Vol. 36, pp. 2291-2298, 2017.
10. Lomba, R., Bernard, S., Gillard, P., Mounaïm-Rousselle, C., Halter, F., Chauveau, C., Tahtouh, T., and Guézet, O., “Comparison of Combustion Characteristics of Magnesium and Aluminum Powders”, Combustion Science and Technology, Vol. 188, pp. 1857-1877, 2016.
11. Gol’dshleger, U. I., and Amosov, S. D., “Combustion Modes and Mechanisms of High-Temperature Oxidation of Magnesium in Oxygen”, Combustion, Explosion, and Shock Waves, Vol. 40, pp. 275-284, 2004.
12. Markstein, G. H., “Magnesium-Oxygen Dilute Diffusion Flame”, Symposium (International) on Combustion, Vol. 9, pp. 137-147, 1963.
13. Huang, H., Zou, M., Guo, X., Yang, R., and Li, Y., “Study of Reactions of Activated Mg-Based Powders in Heated Steam”, Journal of Power Sources, Vol. 246, pp. 960-964, 2014.
14. Chunmiao, Y., Lifu, Y., Chang, L., Gang, L., and Shengjun, Z., “Thermal Analysis of Magnesium Reactions with Nitrogen/Oxygen Gas Mixtures”, Journal of Hazardous Materials, Vol. 260, pp. 707-714, 2013.
15. Nie, H., Schoenitz, M., and Dreizin, E. L., “Oxidation of Magnesium: Implication for Aging and Ignition”, The Journal of Physical Chemistry C, Vol. 120, pp. 974-983, 2016.
16. Moser, G., Tschamber, V., Schönnenbeck, C., Brillard, A., and Brilhac, J. -F., “Non-Isothermal Oxidation and Kinetic Analysis of Pure Magnesium Powder”, Journal of Thermal Analysis and Calorimetry, Vol. 136, pp. 2145-2155, 2019.
17. Khawam, A., and Flanagan, D. R., “Basics and Applications of Solid-State Kinetics: A Pharmaceutical Perspective”, Journal of Pharmaceutical Sciences, Vol. 95, pp. 472-498, 2006.
18. Lesnikovich, A. I., and Levchik, S. V., “A Method of Finding Invariant Values of Kinetic Parameters”, Journal of Thermal Analysis, Vol. 27, pp. 89-93, 1983.
19. Ledeti, A., Olariu, T., Caunii, A., Vlase, G., Circioban, D., Baul, B., Ledeti, I., Vlase, T., and Murariu, M., “Evaluation of Thermal Stability and Kinetic of Degradation for Levodopa in Non-Isothermal Conditions”, Journal of Thermal Analysis and Calorimetry, Vol. 131, pp. 1881-1888, 2018.
20. Rezaei-Shahreza, P., Seifoddini, A., and Hasani, S., “Thermal Stability and Crystallization Process in a Fe-Based Bulk Amorphous Alloy: The Kinetic Analysis”, Journal of Non-Crystalline Solids, Vol. 471, pp. 286-294, 2017.
21. Rezaei-Shahreza, P., Seifoddini, A., and Hasani, S., “Non-Isothermal Kinetic Analysis of Nano- Crystallization Process in (Fe41Co7Cr15Mo14Y2C15)94B6 Amorphous Alloy”, Thermochimica Acta, Vol. 652, pp. 119-125, 2017.
22. Hasani, S., Panjepour, M., and Shamanian, M., “Non-Isothermal Kinetic Analysis of Oxidation of Pure Aluminum Powder Particles”, Oxidation of Metals, Vol. 81, pp. 299-313, 2014.
23. Campostrini, R., Abdellatief, M., Leoni, M., and Scardi, P., “Activation Energy in the Thermal Decomposition of MgH2 Powders by Coupled TG-MS Measurements”, Journal of Thermal Analysis and Calorimetry, Vol. 116, pp. 225-240, 2014.
24. Starink, M., “The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of Isoconversion Methods”, Thermochimica Acta, Vol. 404, pp. 163-176, 2003.
25. Friedman, H. L., “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic”, Journal of Polymer Science Part C: Polymer Symposia, Vol. 6, pp. 183-195, 2007.
26. Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., and Sbirrazzuoli, N., “ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data”, Thermochimica Acta, Vol. 520, pp. 1-19, 2011.
27. Jaafari, Z., Seifoddini, A., Hasani, S., and Rezaei-Shahreza, P., “Kinetic Analysis of Crystallization Process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux
(x = 0.1 at.%) BMG”, Journal of Thermal Analysis and Calorimetry, Vol. 134, pp. 1565-1574, 2018.
28. Vyazovkin, S., Chrissafis, K., Di Lorenzo, M. L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Suñol, J. J., “ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations”, Thermochimica Acta, Vol. 590, pp. 1-23, 2014.
29. Hasani, S., Panjepour, M., and Shamanian, M., “The Oxidation Mechanism of Pure Aluminum Powder Particles”, Oxidation of Metals, Vol. 78, pp. 179-195, 2012.
30. Karimpour, M., Eatezadi, S. R., Hasani, S., and Ghaei, A., “The Oxidation Mechanism of Pure Magnesium Powder Particles: A Mathematical Approach”, Metallurgical and Materials Transactions B, Vol. 50, pp. 1597-1607, 2019.
31. Khawam, A., and Flanagan, D. R., “Solid-State Kinetic Models: Basics and Mathematical Fundamentals”, The Journal of Physical Chemistry B, Vol. 110, pp. 17315-17328, 2006.

ارتقاء امنیت وب با وف ایرانی