بهینه‌سازی پارامتر‌های فرایند ساخت داربست کامپوزیت شیشه‌ زیست‌فعال آنتی‌باکتریال/پلی‌کاپرولاکتون به روش چاپ سه‌بعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران

2 گروه بیومواد، نانوتکنولوژی و مهندسی‌بافت، دانشکده فناوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

 در این مطالعه، داربست‌ سه‌بعدی کامپوزیتی شیشه زیست‌فعال حاوی دو درصد مولی نقره/ پلی‌کاپرولاکتون به‌کمک پرینتر سه بعدی با مزایای تکرار‌پذیری و انعطاف‌پذیری بالا در شکل و اندازه ساخته شد. پارامترهای تأثیرگذار (پارامتر‌های چاپگر و نسبت فاز شیشه، فاز پلیمر و حلال در جوهر پرینتر) برای چاپ داربست نانوکامپوزیتی با روش تاگوچی تعیین شدند. مشخصه‌یابی داربست‌های چاپ شده با کیفیت بهینه به‌کمک تفرق اشعه ایکس، میکروسکوپ الکترونی جاروبی، طیف‌سنجی مادون قرمز، تست زیست فعالی، طیف‌سنجی نشر اتمی، تست سمیّت و تکثیر سلولی انجام گرفت. نتایج مربوط به سنتز شیشه زیستی حاوی نقره به روش سل-ژل و عملیات حرارتی شده در دمای 550 درجه سانتی‌گراد، نانو ذراتی با قطر متوسط کمتر از 15 نانومتر و توزیع همگن نقره در آن را می‌دهد. شرایط بهینه برای چاپ داربست با کیفیت قابل قبول (درصد، اندازه و نحوه توزیع حفره‌ها، ساختار منظم لایه‌ها بر روی یکدیگر و تکرار‌پذیری)، نسبت فاز پلیمر به پودر شیشه معادل یک به دو، غلظت 50 درصد پلیمر در حلال، ریترکشن 1/5 و درایو جییر 1200 است. داربست ساخته شده در شرایط بهینه خواص ضد باکتریایی قابل توجه، خاصیت زیست‌فعالی خوب، قابلیت زنده ماندن سلولی قابل قبولی و فعالیت آلکالین فسفاتاز بالایی از خود را نشان دادند. بدین ترتیب داربست‌های نانوکامپوزیتی چاپ سه‌بعدی با حفره‌های ماکرو (تا 500 میکرون) و میکرو سایز و درصد تخلخل تا 64 درصد در ساختار می‌توانند کاندیدای امیدوارکننده‌ای برای مهندسی بافت استخوان باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of the Process Parameters of Antibacterial Bioactive Glass/Polycaprolactone Composite Scaffold Printed by 3D Method

نویسندگان [English]

  • Z. Golnia 1
  • M. Kalantar 1
  • M. Rafienia 2
  • A. Poursamar 2
1 Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
2 Faculty of New Technologies of Medical Sciences, Isfahan University, Isfahan, Iran
چکیده [English]

In this study, a 3D bioactive glass composite scaffold containing 2 mol% silver/polycaprolactone (PCL) was synthesized by a 3D printer with the advantages of reproducibility and high flexibility in shape and size. The effective parameters (printer parameters, ratio of glass-phase, polymer phase, and solvent in printer ink) were determined for printing of nanocomposite scaffold by Taguchi method. Characterization of printed scaffolds was performed using X-ray diffraction, scanning electron microscope, infrared spectroscopy, bioactivity test, atomic emission spectroscopy, toxicity test, and cell proliferation. The results related to the synthesis of silver-containing bioglass by sol-gel method and heat treated at 550°C offered nanoparticles with an average diameter of less than 15 nm and a homogeneous distribution of silver in the matrix. Ratio of polymer phase to glass powder equivalent to 0.5, concentration of polymer in solvent of 50%, retraction of 1.5, and drive gear of 1200 are obtained as the optimum conditions for scaffold printing with acceptable quality (percentage, size and distribution of holes, regular structure of layers, and repeatability). The fabricated scaffold in optimal conditions revealed significant antibacterial properties, good bioactivity, acceptable cell viability, and high ALP activity. 3D printed BG/PCL nanocomposite scaffolds with macro (up to 500 µm) and micro size of holes and porosity percentage up to 64% in the structure can be a promising candidate for bone tissue engineering.

کلیدواژه‌ها [English]

  • Bioactive glass
  • Bone scaffold
  • 3D print
  • Antibacterial
  • Sol-gel
  • Polycarolacton
  1. Amini AR, Laurencin CT, Nukavarapu SP. Bone Tissue Engineering: Recent Advances and Challenges, Crit Rev Biomed. Eng 2012; 40(5): 363–408.
  2. Langer R, Vacanti R. Advances in Tissue Engineering, Journal of Pediatric Surgery 2016; 51(1): 8–12.
  3. O’Brien FJ. Biomaterials & Scaffolds for Tissue Engineering, Materials Today 2011; 14(3): 88–95.
  4. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering, Nat Rev Mater 2020; 5(8): 584–603.
  5. Hench LL, Jones JR. Bioactive glasses: frontiers and challenges, Frontiers in bioengineering and biotechnology 2015; 3:194.
  6. Imran Z. Bioactive Glass: A Material for the Future, World Journal of Dentistry 2021; 3(2): 199–201.
  7. Soni R, Kumar NV, Chameettachal S, Pati F, Narayan Rath S. Synthesis and Optimization of PCL-Bioactive Glass Composite Scaffold for Bone Tissue Engineering, Mater Today Proc 2019; 15(4): 294–299.
  8. Bahremandi Tolou N, Salimijazi H, Dikonimos T, Faggio GG, Tamburrano A, Aurora ALN. Fabrication of 3D monolithic graphene foam/polycaprolactone porous nanocomposites for bioapplications, J Mater Sci 2021; 56(9): 5581–5594.
  9. Ahmed AA, Ali AA, Doaa Mahmoud AR, El-Fiqi AM. Preparation and Characterization of Antibacterial P2O5–CaO–Na2O–Ag2O Glasses, Journal of Biomedical Materials Research Part A 2011; 98(1): 132-142.
  10. Crabtree J, Burchette R, Siddiqi R, Huen I, Hadnott L, Fishman A. The Efficacy of Silver-Ion Implanted Catheters in Reducing Peritoneal Dialysis-Related Infections, Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis 2003; 23(4): 368-74.
  11. Miola M, Verné E, Vitale-Brovarone C, Baino F. Antibacterial Bioglass-Derived Scaffolds: Innovative Synthesis Approach and Characterization, Int J Appl Glass Sci 2016; 7: 238–247.
  12. Solgi S, Khakbiz M, Shahrezaee M, Zamanian A, Tahriri M, Keshtkari S, Raz M ,Khoshroo K, Moghadas S, Rajabnejad A. Synthesis. Characterization and In Vitro Biological Evaluation of Sol-gel Derived Sr-containing Nano Bioactive Glass, Silicon 2015; 9(4): 535-542.
  13. Vulpoi A, Baia L, Simon S, Simon V. Silver effect on the structure of SiO2-CaO-P2O5 ternary system, Materials Science and Engineering 2021; 32(2): 178–183.
  14. Bellantone M, Williams H.D, Hench LL. Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass, Antimicrobial agents and chemotherapy 2002; 46(6): 1940-1945.
  15. Eqtesadi S, Motealleh A, Pajares A, Guiberteau F, Miranda P. Improving Mechanical Properties of 13–93 Bioactive Glass Robocast Scaffold by Poly (lactic acid) and Poly (ε-caprolactone) Melt Infiltration, Journal of Non-Crystalline Solids 2016; 432: 111-119.
  16. Distler T, Fournier N, Grünewald A, Polley C, Seitz H, Detsch R, Boccaccini AR. Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modeling: Fabrication and Characterization, Front Bioeng Biotechnol 2020; 8: 552.
  17. Fathi A, Kermani F, Behnamghader A, Banijamali S, Mozafari M, Baino F, Kargozar S. Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering, Biomedical Glasses 2020; 6(1): 57–69.
  18. Martínez-Vázquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration, Acta Biomater 2010; 6(11): 4361–4368.
  19. Kim YB, Lim JY, Yang G, Seo JH, Ryu HS, Kim GH. 3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration, Journal of Industrial and Engineering Chemistry 2019; 79: 163–171.
  20. Rahaman MN, Xiao W, Huang W. Bioactive glass composites for bone and musculoskeletal tissue engineering, in: Bioactive Glasses, Elsevier 2018; 285–336.
  21. Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth, Int J Nanomedicine, 2018; 13: 5433–5447.
  22. Boga JC, Miguel S.P, De Melo-Diogo D, Mendonça AG, Louro RO, Correia IJ. In Vitro Characterization of 3D Printed Scaffolds Aimed at Bone Tissue Regeneration, Colloids Surfaces B Biointerfaces 2018; 165: 207–218.
  23. Lewis JA, Smay JE, Stuecker J, Cesarano J. Direct ink writing of three-dimensional ceramic structures, Journal of the American Ceramic Society 2006; 89(12): 3599–3609.
  24. Michna S, Wu W, Lewis JA. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds, Biomaterials 2005; 26(28): 5632–5639.
  25. Liu Y, Li T, Ma H, Zhai D, Deng C, Wang J, Zhuo S, Chang J, Wu C. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy. Acta biomaterialia 2018; 73: 531-46.
  26. Karimi Z, Seyedjafari E, Mahdavi FS, Hashemi SM, Khojasteh A, Kazemi B, Mohammadi-Yeganeh S. Baghdadite nanoparticle-coated poly l-lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue-derived mesenchymal stem cells, J Biomed Mater Res A 2019; 107(6): 1284–1293.
  27. Jazi FS, Parvin N, Tahriri M, Alizadeh M, Abedini S, Alizadeh M. The Relationship Between the Synthesis and Morphology of SnO2-Ag2O Nanocomposite, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2014; 44(5), 759–764.
  28. Eqtesadi S, Motealleh A, Miranda P, Pajares A, Lemos A, Ferreira JM. Robocasting of 45S5 Bioactive Glass Scaffolds for Bone Tissue Engineering, Journal of the European Ceramic Society 2014; 34(1): 107-118.
  29. Ohtsuki C, Kokubo T, and Yamamuro T. Mechanism of apatite formation on CaOSiO2P2O5 glasses in a simulated body fluid, Journal of Non-Crystalline Solids 1992; 143: 84-92.
  30. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 2006; 27(15): 2907-2915.
  31. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials 2006; 27(7): 964–973.
  32. Prabhu M, Kavitha v, Suriyaprabha R, Manivasakan P, Rajendran V, Kulandaivelu P. Preparation and Characterization of Silver-Doped Nanobioactive Glass Particles and Their <I>In Vitro</I> Behaviour for Biomedical Applications, J Nanosci Nanotechnol 2013; 13(8): 5327–5339.
  33. Vulpoi A, Gruian C, Vanea E, Baia L, Simon S, Steinhoff HJ, Göller G, Simon V. Bioactivity and protein attachment onto bioactive glasses containing silver nanoparticles, J Biomed Mater Res A 2012; 100(5): 1179–1186.
  34. Vulpoi A, Baia L, Simon L, Simon V. Silver Effect on the Structure of SiO2-CaO-P2O5 Ternary System, Materials Science and Engineering: C 2012; 32(2): 178-183.
  35. Vallet-Regí M, Román J, Padilla S, Doadrio JC, Gil FJ. Bioactivity and Mechanical Properties of SiO2–CaO–P2O5 Glass-Ceramics, Journal of Materials Chemistry 2005; 15(13): 1353-1359.
  36. Muthusamy P, Kandiah K, Rangaraj S, Manivasakan P, Venkatachalam R, Kulandaivelu P. Preparation and Characterization of Silver-Doped Nanobioactive Glass Particles and Their In Vitro Behaviour for Biomedical Applications, Journal of Nanoscience and Nanotechnology 2013; 13(8):5327-39.
  37. Vallet-Regí M, Román J, Padilla S, Doadrio JC, Gil FJ. Bioactivity and mechanical properties of SiO 2 –CaO–P 2 O 5 glass-ceramics, J Mater Chem 2005; 15(13): 1353–1359.
  38. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Composites science and technology 2010; 70(13): 1764-76.
  39. Dziadek M, Menaszek E, Zagrajczuk B, Pawlik J, Cholewa-Kowalska K. New generation poly (ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Materials Science and Engineering: C 2015; 56: 9-21.
  40. Rich J, Jaakkola T, Tirri T, Närhi T, Yli-Urpo A, Seppälä J. In vitro evaluation of poly (ε-caprolactone-co-DL-lactide)/bioactive glass composites. Biomaterials 2002; 23(10): 2143-50.
  41. Petretta M, Gambardella A, Boi M, Berni M, Cavallo C, Marchiori G, Maltarello MC, Bellucci D, Fini M, Baldini N, Grigolo B. Composite scaffolds for bone tissue regeneration based on PCL and Mg-containing bioactive glasses. Biology 2021; 10(5): 398.
  42. Staehlke S, Rebl H, Nebe B. Phenotypic stability of the human MG-63 osteoblastic cell line at different passages, Cell Biol Int 2019; 43(1): 22–32.
  43. Chang YY, Huang HL, Chen YC, Hsu JT, Shieh TM, Tsai MT. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films, PLoS One 2014; 9(14): e9559.
  44. Mohsenzadeh S, Nazarymoghaddam K. Evaluation of Cytotoxisity of Nanosilver Particles on Monocytes of White Blood Cells (Doctoral dissertation, Dissertation] Dental Faculty of Shahed University of Medical Science).
  45. Ben‐Arfa BA, Neto AS, Miranda Salvado IM, Pullar RC, Ferreira JM. Robocasting: Prediction of ink printability in solgel bioactive glass. Journal of the American Ceramic Society 2019; 102(4):1608-18.
  46. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in microbiology 2016; 7:1831.
  47. Shoja M, Shameli K, Ahmad MB, Kalantari K. Preparation, characterization and antibacterial properties of polycaprolactone/ZnO microcomposites, Digest Journal of Nanomaterials and Biostructures 2015; 10(1): 69-78.
  48. Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. Journal of Biomedical Materials Research Part A: An Official Journal of the Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2010; 93(2): 475-83.

تحت نظارت وف ایرانی